

Burfell Hydroelectric Project Extension

Geological Report

Key Page				Landsvirkjun
LV report no:	LV-201	3-064	Date:	May 2013
Number of pages:	171	Copies: 10	Distribution:	On <u>www.lv.is</u> X Open Limited until
Title:	Burfell	Hydroelectric Proje	ct Extension - Geolog	ical Report
Authors/Company:	Snorri I Þorgeir of 17 A	² áll Snorrason, Áki T [•] S. Helgason /Almer .pril 2013)	Thoroddsen, Anna Kris nna verkfræðistofan h	stín Sigursteinsdóttir and If (merged with Verkís hf as
Project manager:	Albert Guðmundsson, Landsvirkjun			
Prepared for:	Landsvi	irkjun		
Co operators:	4			
Abstract:	Landsvi Almenr the site investig powerf results.	irkjun plans to exter na verkfræðistofan h :, including drilling t gations with two alt nouse and Undergro	nd the Búrfell Power S of carried out geologic hree cored boreholes ernatives in mind for und powerhouse. Th	Station, South-Iceland. cal investigation in 2012 at and reviewing the earlier a new station: Surface le report presents the

Keywords: andesite, Búrfell Station, Búrfell Extension, boreholes, conglomerate, geology, hydroelectric project, Iceland, joints, moraine, olivine basalt, packer test, point load, RQD, rock mass quality Q, sandstone, Sámsstaðaklif, scoria, Thjorsa, tholeite basalt, Trjáviðarlækur, Þjórsá.

ISBN no:

Approved by Landsvirkjun's project manager

Alboy Gulmunch

TABLE OF CONTENTS

1	INTR	RODUCTION	1
	1.1	General	1
	1.2	Búrfell Station and Búrfell HEP Extension	1
	1.3	The investigation and report	2
2	GEO	LOGICAL BACKGROUND INFORMATION	5
	2.1	General geology of Iceland	5
	2.2	Engineering geological investigations	5
3	GEO	LOGICAL INVESTIGATIONS IN 2012	7
	3.1	Introduction	7
	3.2	Exploratory drilling	8
	3.3	Logging of boreholes	8
	3.4	Point load tests	9
	3.5	Packer tests for hydraulic conductivity	10
	3.6	Pumping test for hydraulic conductivity	15
4	LITH	OLOGY	17
	4.1	Introduction	17
	4.2	Lithostratigraphic units and properties	17
5	EAR	THQUAKES AND FRACTURES	21
	5.1	Introduction	21
	5.2	Earthquakes and seismic zoning	21
	5.3	Joints, faults and other discontinuities	22
6	GEO	LOGICAL CONDITIONS FOR UNDERGROUND POWERHOUSE	25
	6.1	Introduction	25
	6.2	Headrace canal and intake	25
	6.3	Pressure shaft and cable tunnel	27
	6.4	Powerhouse	28
	6.5	Tailrace tunnel	29
	6.6	Access tunnel	31
_	6.7	lailrace and side canal	31
7	GEO	LOGICAL CONDITIONS FOR SURFACE POWERHOUSE ALTERNATIVE	33
	7.1	Introduction	33
	7.2	Headrace canal and diversion dike	33
	7.3	Power intake structure and penstock	36
	7.4	Surface powerhouse	39
	1.5		43
REFEREN	VCES		47
DRAWIN	GS		
APPEND	ICES		

LIST OF FIGURES

Figure 1-1	Viewing from southwest to northeast with the current Búrfell Station by Fossá under Sámsstaðamúli mull and the proposed Búrfell Extension site right of Sámsstaðaklfi . Photo: Emil Þór Sigurðsson 16 August 2012
Figure 3-1	Rock mass quality. From Palmstrom and Broch (2006)
Figure 3-2	Packer tests of holes drilled 1980-1983 (BF-1 to BF-21) and in 2012 (BF-30 to 32) in the Older Búrfell formation (OB). Test interval is in meters and LU is in litres/minute per metre along the test interval
Figure 3-3	Packer tests in Sámstaðaklif Basalt formation (SB). The holes were drilled in 196214
Figure 3-4	Overview of packer tests in both geological formations
Figure 3-5	Distribution of LU values lower than 50 LU. Two packer tests yielding 120 and 200 LU in PT-8 are omitted in the graph
Figure 5-1	Large earthquakes in the South Iceland Seismic Zone (SISZ). From Richwalski and Roth (2008) with the location of mountain Búrfell added. Missing in this figure is the M>=6 earthquake doublet in 2008 (Decriem et al. (2010)) in the west and the 1987 Vatnafjöll M=5,9 earthquake in the east believed to show the extension of the SISZ to the Eastern Volcanic Zone (EVZ) (Ágústsson et al. (1999))
Figure 6-1	Looking northwest over Samsstaðaklif with Bjarnalón in the upper right and the headrace canal of the Búrfell Station. The site of the headrace and tailrace canals of the underground alternative of the Búrfell Extension is shown. Photo: Emil Þór Sigurðsson 16 August 2012
Figure 6-2	Closer look of headrace canal site. Viewing northeast with Skálarfell in the background. Cored borehole BF-30 being drilled close by the cable tunnel-location and showing location of BF-31 east of the headrace canal. Photo: Snorri Páll Snorrason 3 July 2012
Figure 6-3	The drilling contractor at the site of borehole BF-30. Photo: Áki Thoroddsen 26 June 2012
Figure 6-4	Drilling of BF-32 in progress. Photo: Snorri Páll Snorrason 15 July 201230
Figure 6-5	Drilling of BF-32 in progress - closeup. Photo: Snorri Páll Snorrason 15 July 201230
Figure 6-6	Sámsstaðaklif-fracture meeting the headrace-canal of Búrfell Station in the centre. Location of access tunnel entrance for Búrfell Extension - Underground alternative. Photo: Emil Þór Sigurðsson 16 August 2012
Figure 7-1	Sámsstaðaklif-fracture meeting the headrace-canal and diversion dike of Búrfell Station in the centre-right. Location of penstock for Búrfell Extension. Photo: Emil Þór Sigurðsson 16 August 2012
Figure 7-2	Viewing north from mountain Búrfell over headrace canal of Búrfell Station in the lower centre, connected to Bjarnalón Reservoir to the right. Photo: Snorri Páll Snorrason 12 June 2012
Figure 7-3	Viewing west to Sámsstaðamúli. Headrace canal for the Búrfell Station turning right to the intake. The headrace canal of the Búrfell Extension starts on the nearbank and the pipe in center left passing underneath the diversion dike is located at what will be the right bank of the new headrace canal at about station 0+350. Photo: Steinar I. Halldórsson 3 May 2011
Figure 7-4	Viewing south-southwest with cored borehole BF-1 from 1980 in the foreground and pumping well BD-1 from 1984 at proposed surface powerstation lot. Trjáviðarlækur and other streams opening out to the tailrace canal-to-be. Photo: Steinar I. Halldórsson 2 March 2011
Figure 7-5	Picture taken close to the end of the planned headrace canal at about station 0+530 with the trench in the figure being where the left bank will be. The cut rock in the trench is probably the same as the 5 m thick uppermost tholeiite

	basalt seen in BF-19 at elevation 239 m a.s.l. to 243 m a.s.l. Viewing west- southwest. Photo: Snorri P. Snorrason 10 July 2012
Figure 7-6	Bottom of the section of the trench in Figure 7-6 showing the conglomerate layer underneath the tholeiite basalt seen in borehole BF-19 at elevation 237 m a.s.l. to 239 m a.s.l. Photo: Snorri P. Snorrason 10 July 2012
Figure 7-7	Viewing north. Cored borhole BF-32 being drilled through the moraine. The NE- corner of the surface powerhouse pit will be in the lower far left. The position of the penstock is shown. Photo: Steinar I. Halldórsson 17 July 2012
Figure 7-8	Viewing northeast towards Bjarnalón Reservoir and the headrace canal of Búrfell Station by and above Sámsstaðaklif. Trjáviðarlækur stream entering from centre right and and meeting streams from Skálarfell and turning west in the lower left. The light colour in the centre right and lower left is mainly reflecting the pumice from Hekla in the overburden. Photo: Emil Þór Sigurðsson 16 August 2012
Figure 7-9	Viewing north-northeast with the headrace canal of the Búrfell Station in the upper right. The light and grey colours are mainly due to pumice from Hekla. Photo: Emil Þór Sigurðsson 16 August 2012
Figure 7-10	Enlargement of part of Figure 7-9. Well BD-1 is located roughly at the middle of proposed surface powerhouse. Borehole BF-32 is roughly 50 m east of station 0+300 along the proposed penstock and on top of glacial till. Photo: Emil Þór Sigurðsson 16 August 2012
Figure 7-11	Close-up of well BD-1 that was drilled for pumping test in 1984. As can be seen from the height of the surveyor and the exposed casing the excavation at the place is 3-4 metres. Viewing south with mountain Búrfell in the background. Photo: Snorri P. Snorrason 10 July 2012
Figure 7-12	Stream cutting through glacial till just north of planned surface powerhouse. Borehole BF-32 being drilled in the background. Photo: Snorri P. Snorrason 12 July 2012
Figure 7-13	The tailrace canal and Trjáviðarlækur-stream in 2012. View to the west towards Fossá (not seen in photo) and taken near the middle of the canal. Substantial chunks of the sandstone have been eroded in the flushing operations performed in the area in the early nineteen-eighties. Photo: Snorri P. Snorrason 14 June 2012
Figure 7-14	Tailrace canal - view to the east. Photo: Snorri P. Snorrason 14 June 2012
Figure 7-15	Close up look of the sandstone. The lens cap's outer diameter is 68 mm The brownish colour is the formation of palagonite in an early stage. Photo: Snorri P. Snorrason 14 June 2012

LIST OF TABLES

Table 3-1	Exploration holes drilled in the campaign of 2012 7
Table 3-2:	Results of point-load testing 10
Table 3-3	Single packer tests in boreholes drilled in the Older Búrfell formation (OB)12
Table 3-4	Packer tests in holes drilled 1962 in the Sámstaðaklif Basalt formation (SB)13
Table 4-1	Lithostratigraphic units of the Búrfell HEP Extension

1 INTRODUCTION

1.1 General

The *Búrfell <u>Hydroelectric Project Extension¹* has to do with the proposed construction of a second power station at the Búrfell-site, Þjórsárdalur (Thjorsardalur), South Iceland. The older hydroelectric power station and project will be referred to as *Búrfell Station*.</u>

Refer to Figure 1-1 below for aerial view of the close surroundings, Drawing 01 for a general location map, Drawing 02 for a close-up map of the construction site of the two alternatives of the Búrfell HEP Extension and the same on aerial photo in Drawing 03.

Figure 1-1 Viewing from southwest to northeast with the current Búrfell Station by Fossá under Sámsstaðamúli mull and the proposed Búrfell Extension site right of Sámsstaðaklfi². Photo: Emil Þór Sigurðsson 16 August 2012.

1.2 Búrfell Station and Búrfell HEP Extension

For detailed description of the project, refer to Almenna verkfræðistofan (2012A and 2012B). Below is the background of the project described:

The construction of hydropower plants at the Þjórsá and Tungnaár watershed commenced with the construction of the Búrfell Station (1966-1972, 210 MW) and the Þórisvatn Reservoir (1970-1972). Following years two hydropower plants were built in the Tungnaár river; the Sigalda Station

Almenna verkfræðistofan hf.

¹ Also called Búrfell HEP Extension or Búrfell Extension for short. In some of the reports from 1980-1990 the project is frequently called Búrfell II.

² The name Sámsstaðaklif (Sámsstaða-cliff) is used for the N60°E-trending fracture and the gully at the southern end of it, as well as the hillside on each side of it.

(1973-1978, 150 MW) og the Hrauneyjafoss Station (1977-1981, 210 MW). Later the Sultartangi Dam (1982-1984) and the Kvíslarveita Diversion (1980-1985) were built.

In 1980 it appeared that the Búrfell Station would become a bottleneck in the hydropower chain when the above mentioned projects were completed. Large amount of unharnessed water would flow past the station and there would be mismatch in the rated power between the Búrfell Station at the one hand and Hrauneyjafoss Station and Sigalda Station at the other hand. Therefore, Landsvirkjun sought ways to increase the rated power of Búrfell Station. The company concluded initially that the most feasible project would be a new powerstation near the Sámsstaðaklif hill, in the vicinity of the existing station. The proposed project consisted of a new headrace canal on the top of Sámsstaðaklif hillside, a penstock down the hill, a surface powerhouse housing two 70 MW Francis turbines and a 2 km long tailrace canal with its downstream end about 1 km away from the Burfell Station.

Already in 1981 the excavation of the tailrace canal had begun. During the summers 1981 to 1985, 1988 and 1989 some 1,4 million m³ of material was excavated. In addition, the site for working camps was prepared.

In the end of the 90s a revised design of a smaller extension of the Búrfell Station was prepared and tender design of 100 MW extension was initiated. In 1992 the project was put on hold due to changed market conditions. At that moment about 0,5 million m³ of material had yet to be excavated in the tailrace canal.

During 1997 and 1998 new turbines were installed in the existing Búrfell Station, increasing rated power from 210 MW to 270 MW. The net rated head is 115 m and the rated discharge was increased to 280 m³/s.

Today, 60 % of the time the Burfell Station is working close to its rated power. During the winter months on average 30 m³/s of discharge passes by the station and more than 100 m³/s from May to September.

With this in mind Landsvirkjun has now decided to revive the plan to build a new hydropower plant in the Sámsstaðaklif hill, with the intension to harness more water and have the chance to reduce the load on the Burfell Station. The rated power can be as high as 140 MW.

Two schemes are being studied. The first alternative is the above mentioned scheme with a surface powerhouse and a penstock down the Sámsstaðaklif hillside. The second alternative is to build underground powerhouse in the hill. Previous studies by Landsvirkjun indicate that the undergrond scheme is an economical solution and possibly more environmental friendly (Almenna verkfræðistofan (2012A and 2012B)).

1.3 The investigation and report

The geological investigation for the Búrfell Extension was performed by Almenna verkfræðistofan hf. (Almenna Consulting Engineers Ltd.) for Landsvirkjun in the summer of 2012.

Two alternatives or options for the Búrfell Extension are considered, called Underground powerhouse alternative and Surface powerhouse alternative.

In the report, the dot (.) is used for separation of thousands and for decimal places the comma (,) is used.

For investigations in 2012 and other recent ones, the coordinates in planview are either the geographic longitudes and latitudes or they are the Icelandic ones with ISN93 as reference (Umhverfisráðuneytið (1999)) "with coordinates in Lambert's conformal conical projection with standard parallels 64°15'N and 65°45'N and central meridian 19°W. False eastings and northings are both 500.000,00 at 65°N and 19°W" (Landmælingar Íslands (1997)).

For elevation ISH2004 is used as reference (Umhverfisráðuneytið (2011)).

2 GEOLOGICAL BACKGROUND INFORMATION

2.1 General geology of Iceland

On the general geology of Iceland, reference is made to a special issue, *The dynamic geology of Iceland,* of the journal *Jökull* in the year 2008 (Freysteinn Sigmundsson et al. (2008)) and related literature. Some of it is presented in Appendix A.

For the geology of the area around Búrfell HEP Extension, reference is made to a journal article (Elsa G. Vilmundardóttir et al. (1985)).

For the more detailed engineering geological/geotechnical work, the reader is referred to the reports presented in Section 2.2 below.

2.2 Engineering geological investigations

Research has been ongoing in the area around Búrfell Station and Búrfell HEP Extension for decades as described in section 1.2. Below reports are listed in chronological order for most of the important geological investigations from that time:

- Harza Engineering Company International (1963):
 - o Burfell project. Project planning report.
 - Volume I Summary Letter and Report.
 - Volume II Appendices.
- Haukur Tómasson (1967):
 - o Jarðfræðirannsóknir virkjunarstaðarins við Búrfell. (In Icelandic).
- Ingibjörg Kaldal (1980):
 - o Búrfell II. Laus jarðlög. (In Icelandic).
- Snorri Páll Snorrason (1981):
 - o Jarðfræði Sámstaðaklifs. (In Icelandic).
- Pétur Pétursson (1982):
 - o Búrfell II. Loftboranir á stöðvarhússtæði. (In Icelandic).
- Almenna verkfræðistofan (1982):
 - o Stækkun Búrfellsvirkjunar. Rannsóknir á jarðlögum og byggingarefnum.
- Ágúst Guðmundsson, Elsa G. Vilmundardóttir and Snorri P. Snorrason (1983).
 - Geological map of bedrock. Scale: 1:50000. Name: Búrfell Langalda. Number: 3540 B.
 - Published by Orkustofnun Vatnsorkudeild and Landsvirkjun.
- Bjarni Bjarnason (1983):
 - Búrfell II. Aðrennslisskurður, stöðvarinntak og stöðvarhúsgrunnur. Kjarnaborun 1983. (In Icelandic).
- Jón Ingimarsson (1985):
 - Mat á lekt jarðlaga á stöðvarhússtæði. (In Icelandic).

Appendix B shows the bedrock map of the area from 1963 (Harza Engineering Company International (1963)) and Drawing 14 shows a part of the bedrock map of the area from 1983 (Ágúst Guðmundsson et al. (1983)).

3 GEOLOGICAL INVESTIGATIONS IN 2012

3.1 Introduction

In June 2012, three cored boreholes were drilled at the site of the planned Búrfell Extension and six boreholes were drilled in the same campaign with rotary pneumatic percussion drilling, see Table 3-1.

Drawing 04 and Drawing 05 show the boreholes from previous investigation campaigns as well as the ones from 2012 in connection with the Surface powerhouse alternative and the Underground powerhouse alternative, respectively.

Borehole number	Depth of hole	Coordinates with ISN93Elevation with ISH2as reference3as reference4		rith ISH2004 erence ⁴	Length of 3" ODEX-	Range of NQ-size	
	(m)	North or X (m)	East or Y (m)	At top of casing (m a.s.l.)	At ground (m a.s.l.)	(m)	(m)
Cored boreh	oles						
BF-30	174,1	460998,08	400336,45	268,39	268,18	2,30	2,30 to 174,10
BF-31	48,18	461096,89	400469,09	266,71	266,53	2,60	2,60 to 48,18
BF-32	84,3	460809,06	400131,84	181,87	181,57	3,0	3,0 to 84,3
Rotary pneu	matic percus	sion drilled b	oreholes (cool	rdinates taken	by hand-GPS	and elevatior	from map)
BF-33	3	461038	400469	No casing	252	No casing	No core
BF-34	3	461030	400447	No casing	254	No casing	No core
BF-35	3	461013	400413	No casing	254	No casing	No core
BF-36	3	460998	400441	No casing	251	No casing	No core
BF-37	3	461011	400461	No casing	251	No casing	No core
BF-38	3	461024	400472	No casing	251	No casing	No core

<u> </u>							
Table 3-1	Exploration	holes	drilled in	the	campaign	of	2012
	LAPIOIULIOII	110100	annoa ni	010	oumpuign	01	2012

Almenna verkfræðistofan hf.

³ Refer to Section 1.3.

⁴ Refer to Section 1.3.

3.2 Exploratory drilling

Exploratory drilling was carried out by Ræktunarsamband Flóa og Skeiða ehf (RSFS). Each of the three cored holes is cased with 3" ODEX drilled-casing (Atlas Copco (2008)), 2-3 m long. The core was recovered with Longyear NQ triple tube equipment (Boart Longyear Ltd. (2012)), giving cores of 45 mm diameter. The 3" rotary pneumatic percussion drilled holes were drilled with the same drill rig using 76 mm drill bit.

3.3 Logging of boreholes

Detailed graphic logs of cored-boreholes from 2012 are shown in Appendix C, graphic logs of cored-boreholes from earlier campaigns are presented in Appendix D and pictures of the cores in Appendix E. Interpretation of the rotary pneumatic percussion drilling 2012 is shown in Appendix F.

The regular Rock Quality Designation, RQD, i.e. for core pieces longer than 10 cm, is shown, as well as values for 30, 50 and 100 cm pieces, where RQD is the percentage of core pieces longer than 10 cm (or 30, 50 or 100) of the core interval assessed.

Also on the logs are results on ground water table, core recovery (in percentage; can be more than 100% due to slight inaccuracy in the measurements on the core lengths and recovery), point load tests (see Section 3.4) and Lugeon or packer permeability tests (see Section 3.5).

The rock mass quality presented is "Qc" (or "Qcore") rather than the traditional Q as the results are mainly based on observations of the core rather than the whole rock mass. The Q-system was defined in Norway (Norwegian Group for Rock Mechanics (2000)) and has been adapted for use in Iceland over the years with experience from tunneling (Vegagerðin (2009)). The core from BF-1, BF-18, BF-19, BF-20 and BF-21 was logged anew and the Qc value rated according to practice of today in Iceland.

Support of structures is not dealt with in this report but for reference purposes Figure 3-1 is presented.

Figure 3-1 Rock mass quality. From Palmstrom and Broch (2006).

3.4 Point load tests

Point load tests were carried out as soon after drilling as possible on the D = 45 mm core (+/- 0,5 mm) in a diametral setup, i.e. with force applied perpendicular to the length of the core. The test procedure and calculation of results shown in Table 3-2 follows operating instructions of the point load test apparatus (ELE International (2003)) and description of the Norwegian Group for Rock Mechanics (2000):

$$I_{s50} = I_s * F = \left(\frac{P(N)}{D^2(mm2)}\right) * \left(\frac{D(mm)}{50(mm)}\right)^{0.45}$$

Here, Is is the point-load strength index and 50 refers to a 50 mm core; F is a core-size correction factor; P is the measured load at failure, and D is the measured diameter of the core being tested. In the current case this becomes:

$$I_{s50} = I_s * F = \left(\frac{P(N)}{45^2(mm2)}\right) * \left(\frac{45(mm)}{50(mm)}\right)^{0,45} = \left(\frac{P(N)}{45^2(mm2)}\right) * 0,954$$

Point load measurements							
Borehole	Depth (m)	Stratigraphic member	Number of tests	Average measured load at failure, P (N)	Point load strength index, I _{s50} (MPa)	Comments	
BF-30	18,20- 18,60	Conglomerate	2	4700	2,2		
BF-30	31,27- 31,54	Conglomerate	4	9700	4,6		
BF-30	73,74- 74,0	Andesite	4	23400	11,0		
BF-30	75,49- 75,66	Andesite	3	19900	9,4		
BF-30	83,55- 83,8	Andesite	3	13000	6,1		
BF-30	95,30- 95,60	Andesite	4	31000	14,6		
BF-30	96,85- 97,07	Andesite	3	27000	12,7		
BF-30	104,3- 104,47	Tholeiite	3	27300	12,9		
BF-30	115,75- 116,02	Tholeiite	3	19900	9,4		
BF-30	116,3- 116,6	Tholeiite	4	1300	0,6	*	
BF-30	118,30- 118,57	Tholeiite	3	19,5	9,2		
BF-30	120,04- 120,27	Conglomerate	4	3,4	1,6	*	
BF-30	126,6- 127,0	Olivine basalt	5	7,7	3,6		
BF-30	138,25- 138,60	Tholeiite	5	16,6	7,8		
BF-30	152,3- 152,6	Basalt	4	16,4	7,7		
BF-30	160,3- 160,6	Olivine basalt	4	13,8	6,5		
BF-30	164,5- 164,85	Olivine basalt	4	7,3	3,4		
BF-30	165,36- 165,6	Olivine basalt	3	13,4	6,3		
* Strenath	is below ra	inge of advisable	use of point	load testing (Norwegia	an Group for Rock Mech	nanics (2000)	

Table 3-2:	Results of point-load testing.
------------	--------------------------------

* Strength is below range of advisable use of point load testing (Norwegian Group for Rock Mechanics (2000) and is not included in Table 4-1.

3.5 Packer tests for hydraulic conductivity

Hydraulic conductivity tests (or permeability tests) were performed in most of the cored holes, the so-called Lugeon test or packer test, using single packer method (Árni Hjartarson et al. (1983)). The results are expressed as lugeon, LU, where one (1) LU "is empirically defined as the hydraulic conductivity required to achieve a flow rate of 1 liter/minute per meter of test interval under a reference water pressure equal to one (1) MPa" (Quinones-Rozo (2010)).

Geological and engineering geological investigations at the Búrfell Station site started soon after 1960 as discussed in Sections 1.2 and 2.2 and many layouts of the project were investigated and several boreholes drilled to investigate each layout. Below are presented permeability tests in

holes directly relevant to the present project, i.e.: BF-1 from 1980, BF-18 to BF-21 from 1983, and BF-30 to BF-32 from 2012.

The testing intervals along the depth of the borehole depend on conditions in each hole and therefore they are of variable length.

For results, refer to Table 3-3 and Table 3-4 and the borehole logs in Appendix C, Appendix D and to Figure 3-2 to Figure 3-5.

Borehole	Geological formation	Depth of packer in borehole	Bottom of borehole during packer test	Packer test interval or length	LU ((I/min)/m)
		(m)	(m)	(m)	((/////////////////////////////////////
BF-1	OB	5	151	146	2
BF-18	OB	9	20	11	5
BF-18	OB	20	40	20	1
BF-19	OB	9	20	11	4
BF-19	OB	20	40	20	6
BF-20	OB	19	30	11	5
BF-20	OB	35	40	5	15
BF-20	OB	40	50	10	7
BF-21	OB	9,5	16	6,5	8
BF-21	OB	18,5	41	22,5	5
BF-21	OB	41	50	9	25
BF-30	OB	7,2	33,6	26,4	0,75
BF-30	OB	33,6	42,13	8,53	2,7
BF-30	OB	42,13	54,6	12,47	6
BF-30	OB	54,6	63,6	9	20
BF-30	OB	63,6	75,42	11,82	9
BF-30	OB	73	82,62	9,62	3
BF-30	OB	85,75	93,6	7,85	45
BF-30	OB	91,6	102,56	10,96	43
BF-30	OB	96,6	111,6	15	10
BF-30	OB	108,6	120,6	12	14
BF-30	OB	117,6	129,6	12	6
BF-30	OB	129,6	144,6	15	6
BF-30	OB	138,6	153,6	15	4
BF-30	OB	153,6	174,1	20,5	12
BF-31	OB	12,6	42,18	29,58	3,5
BF 32	OB	3	21,7	18,7	2
BF 32	OB	52,2	65,13	12,93	2,3
BF 32	OB	61	84,32	23,32	3
BF 32	OB	3	84,32	81,32	3

Table 3-3 Single packer tests in boreholes drilled in the Older Búrfell formation (OB).

Table 3-4

Borehole	Geological formation	Depth of packer in borehole	Bottom of borehole during packer test	Packer test interval or length	LU ((I/min)/m)
		(m)	(m)	(m)	(("""")
PT-8	SB	1,5	4	2,5	1
PT-8	SB	4	6,8	2,8	200
PT-8	SB	6,8	8,7	1,9	30
PT-8	SB	8,7	11,7	3	120
PT-8	SB	11,7	16,2	4,5	1
PT-8	SB	16,2	20	3,8	30
PT-9	SB	3	6	3	1
PT-9	SB	6	9	3	20
PT-9	SB	9	12	3	1
PT-9	SB	9	12	3	20
PT-10	SB	0,8	21,2	20,4	40
PT-10	SB	21,2	40,5	19,3	25

Packer tests in holes drilled 1962 in the Sámstaðaklif Basalt formation (SB).

Figure 3-2 Packer tests of holes drilled 1980-1983 (BF-1 to BF-21) and in 2012 (BF-30 to 32) in the Older Búrfell formation (OB). Test interval is in meters and LU is in litres/minute per metre along the test interval.

Figure 3-3 Packer tests in Sámstaðaklif Basalt formation (SB). The holes were drilled in 1962.

Figure 3-4 Overview of packer tests in both geological formations

Figure 3-5 Distribution of LU values lower than 50 LU. Two packer tests yielding 120 and 200 LU in PT-8 are omitted in the graph.

3.6 Pumping test for hydraulic conductivity

Pumping test was performed in 1984 (Jón Ingimarsson (1985)) at the powerhouse site of the then proposed Búrfell Extension - Surface Powerhouse Alternative. The rock formation tested is the Older Búrfell. The results are in good concordance with the packer tests and the report summarizes the results of the test as follows:

- Transmissivity, $T = 1,0*10-5 \text{ m}^2/\text{s}$
- Storage coefficient, $S = 4*10^{-4}$ (-)
- K= (0,5-1,0)*10⁻⁶ m/s

4 LITHOLOGY

4.1 Introduction

In the chapter the stratigraphy and lithology at the site of the Búrfell Extension is described.

4.2 Lithostratigraphic units and properties

When describing the lithostratigraphic units in Table 4-1 below, the terminology from the earlier geological investigation reports discussed in Chapter 2 are used, and results are presented from the investigation in 2012. Besides, the International Stratigraphic Guide (Murphy and Salvador (1994/1999)) has been referred to.

Table 4-1 Lithostratigraphic units of the Búrfell HEP Extension

Lithostratigraphic units at Búrfell Extension and properties of the units						
Stratigraphy			Properties			
Formation ⁵	Member ⁶	Bed or Flow	Point load strength index, Is50	Range of Qc at each location (-)	Permeability, LU ((I/min)/m)	
Sámsstaðaklif glacial till / moraine (GT)*				0,1-0,37	2-3	
Sámsstaðaklif basalt (SB)					1-200	

Continued

*In Icelandic called jökulberg or jökulruðningur

⁵ Myndun in Icelandic. ⁶ Syrpa in Icelandic.

Almenna verkfræðistofan hf.

Formation	Member	Bed or Flow	Point load	Range of Qc at	Permeability, LU
			strength index,	each location	((l/min)/m)
			ls50	(-)	
Older Búrfell					
(OB)					
	Conglomerate		2,2	2,4-6,5	0,75
			4,6	4,3-5,8	
				3,9-5,2	
	Olivine basalt	Vesicular part		3,9-8,7	
		of lava-flow		07407	
		Complex part		2,7-10,7	2,3
	Tholoiite baselt	of lava-flow		0728	
	Tholelite basait			0,7-2,8	
		Dense part of	12.0	3 1-0 3	Λ
		lava-flow	9.4	1 3-5 0	-
		1444-11044	9,4	7,3-3,0	
			9,2	2,4-3,4	
		Complex part	7,8	1,7-3,8	10
		complex part		1,5-4,6	10
		of lava-now		4,5-10,0	14
				1,4-7,0	3
	Porphyritic	Lova flow	2.6	2,0-8,1	
		Lava-now	3,0	1557	
		Leve flew	12,7	1,5-5,7	
	Basaltic andesite	Lava-now	11,0	1,0-2,1	
			9,4	0,8-1,4	
			14,6	0,7-2,6	
			12,7	1,1-4,0	
				2,6-5,8	
				2,0-4,6	
		vesicular part	6,1		
		of lava-flow		0726	6
		complex part		0,7-2,0	0
		of lava-now		1,3-3,9	20
					9
					45
	0			4.0.00	43
	Scoria			1,2-2,0	3
				4,5-11,9	
				0,2-0,3	
				0,3-1,0	
	Acid tuff			3,0-7,9	

5 EARTHQUAKES AND FRACTURES

5.1 Introduction

Only a brief discussion of some tectonic aspects of the Búrfell area, i.e. seismicity, fractures and faults, will be given in this chapter.

5.2 Earthquakes and seismic zoning

The Búrfell Extension-site is less than 5 km north of the South Iceland Seismic Zone (SISZ), see Figure 5-1, Appendix A and Khodayar et al. (2010).

Fig. 1. The computational area including the South Iceland seismic zone (SISZ). Its location on Iceland is shown as inset. Also indicated are: Western (WVZ) and Eastern Volcanic Zone (EVZ); branches of the mid-Atlantic ridge (dashed lines); the position of the volcanoes Hengill, Hekla, and Katla (from west to east; triangles; positions from National Geophysical Data Center (NGDC) http://www.ngdc.noaa.gov and topographical maps). Ruptures (Roth, 2004; solid lines) and epicentres (Einarsson, pers. comm.; stars) of the 13 M≥6 earthquakes from 1706 to 2000 are also shown.

Figure 5-1 Large earthquakes in the South Iceland Seismic Zone (SISZ). From Richwalski and Roth (2008) with the location of mountain Búrfell added. Missing in this figure is the M>=6 earthquake doublet in 2008 (Decriem et al. (2010)) in the west and the 1987 Vatnafjöll M=5,9 earthquake in the east believed to show the extension of the SISZ to the Eastern Volcanic Zone (EVZ) (Ágústsson et al.(1999)).

According to ÍST EN 1998-1:2004 Eurocode 8 (Staðlaráð Íslands (2005 and 2009)), section "3.2.1 – Seismic zones", "... national territories shall be subdivided by the National Authorities into

seismic zones, depending on the local hazard. By definition, the hazard within each zone is assumed to be constant. ... For most of the applications of EN 1998, the hazard is described in terms of a single parameter, i.e. the value of the reference peak ground acceleration on type A ground, agR. ..." By "type A ground" is meant "rock or other rock-like geological formation, including at most 5 m of weaker material at the surface."

Icelandic authorities have subsequently subdivided Iceland into seismic zones and published in the National Annex to ÍST EN 1998-1:2004 Eurocode 8 (Staðlaráð Íslands (2010)). The Búrfell Extension lies within the zone of highest "horizontal reference acceleration for earthquakes in Iceland", as shown on Drawing 15 that shows part of the "hazard map for Iceland", with "10% probability of exceedence in 50 years ... i.e. with a mean return period of 475 years" of agR = 0,50 g.

Besides, in section 4.2.5 - Importance classes and importance factors of IST EN 1998-1:2004Eurocode 8 (Staðlaráð Íslands (2005 and 2009)) it says: "Buildings are classified in 4 importance classes," and importance class IV is described as "buildings whose integrity during earthquakes is of vital importance for civil protection, e.g. hospitals, fire stations, power plants, etc." And in section 10.6 - Seismic action: "In buildings of importance class IV, site-specific spectra including near source effects should also be taken into account, if the building is located at a distance less than 15 km from the nearest potentially active fault with a magnitude Ms >= 6,5."

Based on this, in the National Annex to ÍST EN 1998-1:2004 Eurocode 8 (Staðlaráð Íslands (2010)), it says: "In those areas, where the distance to the closest potential fault is less than 15 km and agR = 0,5 g ..., the Tc(S) parameter for ground type A should be increased from 0,4 s to 0,5 s. ... In the South Iceland lowland the near fault area may be defined with a quadrangle whose sides are Hellisheiði in the west, Hekla in the east and the latitudes 64°8' in the north and 63°48' in the south." The above "near-fault-area" has been added to Drawing 15 and on to it has also been added data on fractures from Professor Páll Einarsson of University of Iceland (pers. comm., August 2012).

The fault of the M=7 earthquake of 1912 is closest to the Búrfell HEP Extension in the southwest as seen in Figure 5-1, and the M=5,9 earthquake of Vatnafjöll just south of mountain Hekla (Ágústsson et al.(1999)) is closest in the southeast.

The earthquakes in SISZ typically occur in episodes, on the average every 80 years (Khodayar et al. (2010)), with each episode lasting from days to years (Bryndís Brandsdóttir et al. (2010)). During current episode, starting in year 2000, if not 1987, three earthquakes over six in magnitude have occurred with epicenters 30 to 60 km away, or 25 km if the 1987 Vatnafjöll earthquake of M=5,9 is counted.

5.3 Joints, faults and other discontinuities

Generally speaking, joints, faults, fissures and fractures are types of "discontinuities", i.e. "any mechanical discontinuity in a rock mass having zero or close to zero tensile strength" (Norwegian

Group for Rock Mechanics (2000)). Fractures are seen on the surface and sometimes in boreholes, but a fault need not show up on the surface until after erosion has worked down upper layers. For general discussion of the fractures and faults in the Búrfell area, refer to Snorri Páll Snorrason (1981) and Elsa G. Vilmundardóttir et al. (1985).

Most of the joints observed in the basaltic lava pile and seen in the cored boreholes are caused by cooling of the lavas in question and show no displacement.

It is known from previous research at Sandafell, some 10 km north of Búrfell Station, that open fractures are found in the area (Snorri P. Snorrason, personal communication, November 2012) and a few cases of fractures where found in the cored boreholes of 2012 but without any active movement.

A very clear fracture is visible just north-west of the Búrfell Extension site, the Sámsstaðakliffault/fracture, and it meets the northern end of the headrace canal. The fault/fracture has direction of N65°A and fracture of that and similar direction are known to be strike-slip faults but no active displacement or movement have been observed at this fracture.

Three sets of faults/fractures are to be found in the vicinity of Búrfell, see Drawing 16.

One and probably the oldest set has orientation of N30°A to N60°A and it appears to be to be related to volcanic buildup of the general area. The rocks near or at these faults are expected to be more jointed than elsewhere. No sign of recent activity has been observed near these faults.

Second set of faults with orientation from N0°A to N20°A. These faults are quite prominent in the field as visible depression has been eroded along most of them. The orientation is similar to the strike-slip faults that are presently active in the South Iceland seismic zone but are obviously older as the erosion reveals. No signs of recent activity have been observed at or near these faults. A fault of this set seems to lie from the surface powerhouse site and in northerly direction towards cored hole BF-1. Rocks in both places are very jointed, possibly because of the fault. This fault will cross proposed access tunnel for the Underground powerhouse variant of this project.

The third set of faults have orientation of N60°A to N70°A and some of them have been mapped as strike slip faults. Signs of activity related to them (open fissures) have been observed north of the project site, in Sandafell. A fault of this set is to be found just north of the project site, the Sámstaðaklif fault/fracture mentioned before. It cuts through the current headrace canal but will probably not affect the headrace canal proposed in this paper.

6 GEOLOGICAL CONDITIONS FOR UNDERGROUND POWERHOUSE

6.1 Introduction

Below follows a description of the geological conditions at different structures of the Búrfell Extension - Underground powerhouse alternative. The layers discussed all belong to the Older Búrfell formation (OB).

Refer to Drawing 05 for the layout of the Underground powerhouse alternative, to Drawing 06 for a geological section, Appendix C and Appendix D for the logs of the holes for the relevant structure, and Appendix E for pictures of the cored boreholes 2012, and Table 4-1 for properties of the lithostratigraphic units.

In the description, reference is made to the design presented in a report by Almenna verkfræðistofan (2012B).

6.2 Headrace canal and intake

The headrace canal will be partly excavated in a layer of conglomerate, see log of the cored borehole BF-31 in Appendix C and Figure 6-1 and Figure 6-2 below. The same holds for the intake to the pressure shaft; most of the excavation is in the same conglomerate but the lowest part of the intake hits the olivine basalt below the conglomerate. The conglomerate is rich with rhyolite sand and angular rock fragments. The rounded pebbles are however of basalt origin. The layer is reasonably well cemented but with weak lenses, and somewhat jointed but some of the supposed joints are caused by drilling operation and handling. For the properties of the conglomerate layer, see Table 4-1. Two point load tests were obtained from the layer and they yield 2,2 MPa and 4,6 MPa; the Qc-value (Qcores-value) is 2,4 to 6,5. Permeability is low and the packer tests yields 0,75-3,5 LU.

The intake will be founded on the layer of olivine basalt layer just below the conglomerate. The layer is somewhat jointed but not unduly so, with the lower part dense and reasonably competent rock. The Qc value is in the range of 2,7-10,7, and permeability is low as the packer tests yielded 2,3-3,5 LU; see Table 4-1.

The uppermost 15 m of the conglomerate layer yielded poor core recovery and the recovered rocks are mostly pebbles and stones and the groundmass has eroded away due to weak cementing, but the intake and headrace canal appear to be excavated mostly below this weak zone.

Figure 6-1 Looking northwest over Samsstaðaklif with Bjarnalón in the upper right and the headrace canal of the Búrfell Station. The site of the headrace and tailrace canals of the underground alternative of the Búrfell Extension is shown. Photo: Emil Þór Sigurðsson 16 August 2012.

Figure 6-2 Closer look of headrace canal site. Viewing northeast with Skálarfell in the background. Cored borehole BF-30 being drilled close by the cable tunnel-location and showing location of BF-31 east of the headrace canal. Photo: Snorri Páll Snorrason 3 July 2012.

Figure 6-3 The drilling contractor at the site of borehole BF-30. Photo: Áki Thoroddsen 26 June 2012.

6.3 Pressure shaft and cable tunnel

Refer to Figure 6-2 for drilling of BF-30 and the log of that hole in Appendix C and to Drawing 06 and Drawing 07 and Drawing 08 for a geological section of these structures.

The cable tunnel starts at top in thin overburden and then goes through a 32 m thick layer of the conglomerate discussed in Section 6.2.

Below the intake structure a 60 m thick series of several basalt andesite layers are to be found. They reach down to elevation of 168 m a.s.l. The basalt andesite is generally dark, hard, dense and very jointed with irregular, often thin scoria layer at top. The scoria is filled with silt or opal and the fillings are substantial part of the rocks. The Qc value is estimated in the range 0,7-5,8 but the most common values are 1-3. The point load test yielded some 9,4-12,7 MPa. One scoria layer was thick enough to be evaluated separately, giving a Qc value as low as 0,3-1,0.

Below the basalt andesite a series of basalt layers are to be found and they reach to the bottom of BF-30 at elevation of 94,3 m a.s.l. The basalt is mostly tholeiite basalt very jointed and rather hard, and vesicular and dense rocks alternate. The core recovery is rather good. The Qc value ranges from 1,3-10 in the tholeiite and point load tests give 7,8 to 12,7 MPa. The Qc value of thickest scoria layer was evaluated separately and it ranges from 4,5-11,9.

In the middle of the tholeiite series described above is a sequence of cemented conglomerate, porphyritic olivine basalt layer, and a cemented layer of volcanic acid tuff. This 10 m sequence, at elevation 138-148 m a.s.l., has a very good core recovery, is little jointed and has Qc values from 2,4 to 14,8 and a common Qc value around 6-7.

Permeability varies considerably from low values of 6 LU up to moderate values of 45 LU for the pressure shaft and cable tunnel.

6.4 Powerhouse

Refer to Figure 6-2 for drilling of BF-30 and the log of that hole in Appendix C and to Drawing 08 for a geological section of this structure.

The powerhouse cavern is proposed from elevation of 108 m a.s.l. to 145 m a.s.l. and it will cut through several basalt layers. For the Qc values and point load tests and permeability see the log for BF-30 in Appendix C.

The layers at the powerhouse can be subdivided into four sections:

Crown layers at elevation 156 m a.s.l. down to 144 m a.s.l.: Consist of two heavily jointed tholeiite basalt layers and a 2 m layer of coarse conglomerate in between. The permeability test of the sector indicates 14 LU. The tholeiite basalt is jointed and the layers have Qc value in the range of 1,3-5,0. The joints appear to be predominantly caused by cooling of the lava. The lower tholeiite layer shows a fine pattern of healed joints which could be of tectonic origin. Some point load tests were made but the basalt layers are so jointed that the tests are difficult.; the highest value was 9,3 MPa but one sample yielded only 0,6 MPa. The 2m layer of conglomerate is rather coarse with angular stones of various origin, the Qc value is in the range of 4,3-5,8 and point load strength 1,6 MPa.

Upper layers near crane beam section at elevation 144 m a.s.I down to 129 m a.s.I.: A 5m thick sound and little jointed porphyritic olivine basalt with Qc value of 6,6-14,8 and point load strength of 3,8 MPa. Below is a thin tuff and sandstone layer somewhat jointed at top and horizontally layered and Qc is estimated to be 3,0-7,9. Lowest of the upper layers is a 9 m tholeiite basalt layer including scoria on top, moderately jointed and long vertical joints toward the bottom indicate possibly columnar jointing. The Qc value is given in the range of 4-10 and the point load strength 7,8 MPa. The scoria on top of the layer was filled with silt and reasonably well cemented. The upper layers have good core recovery and RQD of 68-89%. Permeability was measured 6 LU in two tests.

Lower part at elevation 129 m a.s.l. down to 118 m a.s.l.: Intensely jointed upper 11 metres of a 14 m thick layer of tholeiite basalt, including scoria on the top, partly crushed, and with a pattern of healed joints visible in the lower part. The Qc value is 1,4-7,0. Some of the joints are filled with thick brownish secondary minerals. The layer is weakly flow-banded.

Foundation layer at elevation 118 m a.s.l. down to 110 m a.s.l.:The topmost layer (118 – 115 m a.s.l.) is a bottom of 14 m thick tholeiite also found in basalt layer. The layer is moderately jointed and flow-banded. Point load strength is 12,7 MPa. Directly under this layer a 4 m thick tholeiite basalt layer is to be found with Qc value of 2,0-8,1.
6.5 Tailrace tunnel

Refer to Drawing 06 for a geological section of tailrace tunnel and Appendix C and Appendix D for the logs of the holes and Figure 6-4, Figure 6-5 and Figure 7-7 for drilling of the BF-32.

Several boreholes have been drilled near the proposed tailrace tunnel. The present evaluation is primarily based on information in BF-20, BF-21, BF-30, BF-32 and SO-01. BF-20 and BF-21 were drilled at the then planned surface powerhouse site in 1983 and SO-01 was drilled near end of possible access tunnels in 1962. BF-30 and BF-32 were drilled in 2012.

The tailrace tunnel will be excavated in heavily jointed tholeiite basalt and basaltic andesite lavalayers of various rock quality and often including scoria. The lava pile dips a few degrees toward north east (approximately 2°). The Qc value of the basalt layers seem to be in the range of 0,5-8 with the most common range 1-4 or thereabout.

Point load test was made in BF-30 of the 14 m thick layer of tholeiite basalt, discussed in Section 6.4 above for the lower part and foundation layer of the powerhouse, and it shows a strength of 12,7 MPa. Point load test are not available from other holes. Permeability in the tholeiite series is rather low, with BF-1 displaying 3 LU and some other holes showing 5-6 LU. Holes BF-20 and BF-21 give values 15-25 LU in some part of the holes.

Borehole BF-32, located right on the west side of the tailrace tunnel, starts at 187 m. a.s.l. on moraine or glacial till (called tillite in some of the former investigations, i.e. a sedimentary rock) and the moraine extends down to about 140 m a.s.l.; underneath is andesite and basalt with scoria. The crown of the tailrace tunnel will be at about 120 m a.s.l. and boreholes BF-02 and BF-09 to BF-17 close to the exit of the tunnel show the moraine with lowest level at 134 m a.s.l., in BF-10. Further away, 35 metres west of the tunnel is the moraine at eleveation 117 m a.s.l. in hole SO-1. Therefore it cannot be ruled out the the tailrace tunnel hits the moraine in some parts. Refer to Appendix G showing the extent of the moraine according to Pétur Pétursson (1982).

In 1962, an exploration-tunnel was excavated with the plan to hit the site of a then planned underground powerhouse (Haukur Tómasson (1967)). Refer to Drawing 05 and Appendix G and Figure 7-7 for the location of this tunnel and Appendix G for the location ("Mynd 1") and a longitudinal geological section ("Mynd 7") of the tunnel and Appendix H for a text (part English, part Icelandic) on the progress of the excavation (Haukur Tómasson (1967)).

Figure 6-4 Drilling of BF-32 in progress. Photo: Snorri Páll Snorrason 15 July 2012.

Figure 6-5 Drilling of BF-32 in progress - closeup. Photo: Snorri Páll Snorrason 15 July 2012.

6.6 Access tunnel

Refer to Drawing 09 for a geological section of the access tunnel and Appendix D for the logs of the holes.

The rock pile at the access tunnel is the same as for the tailrace tunnel and the most of rock quality and permeability parameters are similar, refer to Section 6.5. No drilling was done at the site in present drill campaign. The access tunnel will lie close to and below an unconformity just north of it, see Drawing 09. The rocks north of the unconformity are different from the tholeiite suite on the south side and possibly more permeable. The access tunnel will cross a possible vague fault line near borehole BF-1, see Drawing 16. No indications of active or recent movements have been observed near this fault.

Figure 6-6 Sámsstaðaklif-fracture meeting the headrace-canal of Búrfell Station in the centre. Location of access tunnel entrance for Búrfell Extension – Underground alternative. Photo: Emil Þór Sigurðsson 16 August 2012.

6.7 Tailrace and side canal

Refer to Section 7.5 for a description, as the design of the tailrace canal and the side canal is identical for the Underground and Surface powerhouse alternatives.

7 GEOLOGICAL CONDITIONS FOR SURFACE POWERHOUSE ALTERNATIVE

7.1 Introduction

Below follows a description of the geological conditions at different structures of the Búrfell Extension - Surface powerhouse alternative.

Refer to Drawing 04 for a plan view of Surface powerhouse structures and investigation boreholes; Drawing 10 for a geological section along headrace canal to beginning of tailrace canal and Drawing 11 for a geological section across the powerhouse pit. In Appendix C and Appendix D are the borehole logs shown, in Appendix E pictures of available cores from boreholes, and Table 4-1 shows the properties of the lithostratigraphic units.

In the description, reference is made to the same stations (in metres) given along the structures as in the report by Almenna verkfræðistofan (2012A)).

7.2 Headrace canal and diversion dike

The headrace canal starts at the south-side of the canal for the older Búrfell Station, itself starting from the southwest of the man-made intake-lake Bjarnarlón. At about station 0+350 of the new canal, a dike starts on the right or west bank, meeting up with the old dike, and at about station 0+570 the canal ends at the intake to the penstock. The dike swings around the end of the canal and intake in the south, with an access road at the south slope of the dike.

The new canal is excavated on the south or left bank of the older canal and on the south side of the Sámsstaðaklif-fracture see Figure 7-1. Counting from northeast to southwest, the following boreholes cover this structure of the Búrfell Extension or give a likely situation:

- PT-9 at about station 0+120, left of centreline.
 - Excavation for canal starting in SB-formation.
 - Lithology: Hyaloclastite or volcanic breccia.
 - Excavation for canal finishing in OB-formation.
 - Lithology: Conglomerate with a thin sandstone layer in between.
- PT-8 at about station 0+320, right of centreline.
 - Excavation for canal starting in SB-formation.
 - Lithology: Thin overburden on top of hyaloclastite or volcanic breccia.
 - Excavation for canal finishing in OB-fomation.
 - Lithology: Thin sandstone layer with conglomerate underneath.
- PT-10 at about station 0+430, right of centreline.
 - Excavation in SB-formation.
 - Lithology: Olivine basalt intermixed with hyaloclastite.
- BF-18 at about station 0+460 on centreline.
 - Excavation in SB-formation.

- Lithology: Cube-jointed tholeiite basalt mainly in one layer but probably just hitting scoria at bottom and a second basalt layer of same type.
- BF-19 at about station 0+570 left of centreline.
 - Excavation in SB-formation.
 - Lithology: Thin overburden on top of tholeiite basalt layers and conglomerate layers.

The logs of the boreholes are found in Appendix D and a longitudinal section in Drawing 10.

Figure 7-1 Sámsstaðaklif-fracture meeting the headrace-canal and diversion dike of Búrfell Station in the centre-right. Location of penstock for Búrfell Extension. Photo: Emil Þór Sigurðsson 16 August 2012.

Figure 7-2 Viewing north from mountain Búrfell over headrace canal of Búrfell Station in the lower centre, connected to Bjarnalón Reservoir to the right. Photo: Snorri Páll Snorrason 12 June 2012.

Figure 7-3 Viewing west to Sámsstaðamúli. Headrace canal for the Búrfell Station turning right to the intake. The headrace canal of the Búrfell Extension starts on the nearbank and the pipe in center left passing underneath the diversion dike is located at what will be the right bank of the new headrace canal at about station 0+350. Photo: Steinar I. Halldórsson 3 May 2011.

7.3 Power intake structure and penstock

Counting of stations along the intake and penstock starts at the intake at the end of the headrace canal and the penstock pipe starts at station 0+292 (m) and ending at 0+431 by the surface powerhouse.

The cored borehole closest to the power intake structure is BF-19, see Drawing 04, Appendix D and Drawing 10 and Figure 7-4 to Figure 7-6:

- BF-19 at about "imaginary station 0 minus 008" and 28 m left of centreline.
 - Excavation in OB-formation.
 - Layers from top to bottom of power intake structure pit:
 - 0,5 m of overburden
 - 5 m of tholeiite basalt
 - 2 m of conglomerate
 - 12 m of tholeiite basalt in two layers including 2 m of scoria in between
 - 1 m of sandstone
 - At least 1m excavation into a 6 m conglomerate-layer.

The cored borehole BF-1 is near the beginning of the penstock and by the first anchor block with rock-anchors underneath, see Drawing 04, Appendix D, Drawing 10 and Figure 7-4:

- BF-1 at about station (0+066) and 10 m right of centreline.
 - Excavation in OB-formation.
 - Layers from top to bottom:
 - 2 m of overburden
 - 31 m of jointed and flow-banded basaltic andesite in three layers including up to 4 m thick scoria at top or bottom of layer

At about station 0+120 the penstock-excavation hits a layer of moraine (glacial till; often called tillite in earlier investigations) and this layer gets thicker to the south.

The cored borehole SO-1 is near the end of the penstock and by the second anchor block with rock-anchors underneath, see Drawing 04, Appendix D and Drawing 10:

- SO-1 at about station (0+365) and 7 m right of centreline.
 - Excavation in sediments.
 - Layers from top to bottom:
 - 5 m of overburden mainly of pumice
 - 39 m of moraine
 - Excavation in OB-formation.
 - More than 3 m of tholeiite basalt

Figure 7-4 Viewing south-southwest with cored borehole BF-1 from 1980 in the foreground and pumping well BD-1 from 1984 at proposed surface powerstation lot. Trjáviðarlækur and other streams opening out to the tailrace canal-to-be. Photo: Steinar I. Halldórsson 2 March 2011.

Figure 7-5 Picture taken close to the end of the planned headrace canal at about station 0+530 with the trench in the figure being where the left bank will be. The cut rock in the trench is probably the same as the 5 m thick uppermost tholeiite basalt seen in BF-19 at elevation 239 m a.s.l. to 243 m a.s.l. Viewing west-southwest. Photo: Snorri P. Snorrason 10 July 2012.

Figure 7-6 Bottom of the section of the trench in Figure 7-6 showing the conglomerate layer underneath the tholeiite basalt seen in borehole BF-19 at elevation 237 m a.s.l. to 239 m a.s.l. Photo: Snorri P. Snorrason 10 July 2012.

Figure 7-7 Viewing north. Cored borhole BF-32 being drilled through the moraine. The NE-corner of the surface powerhouse pit will be in the lower far left. The position of the penstock is shown. Photo: Steinar I. Halldórsson 17 July 2012.

7.4 Surface powerhouse

The surface powerhouse is to be located under the west side of mountain Skálarfell and south of Sámsstaðaklif see Drawing 04 and Figure 7-8 and Figure 7-9. Several boreholes have been drilled at the location in earlier campaigns see Drawing 04. Logs of the following cored boreholes are shown in Appendix D:

- BF-10
- BF-20
- BF-21

Drawing 11 shows a geological section across the powerhouse pit based on a report prepared in 1983 (Bjarni Bjarnason (1983)).

The cross-sections number 10 to 13, presented in Appendix I with location shown on Drawing 12, are from thrust rotary soundings by the powerhouse. The sections show the thickness of the pumice ("vikur" in Icelandic) on top of the moraine (termed "jökulberg" on the sections)⁷. Much of the pumice has now been excavated as can be read from "present land elevation" in graphic logs og holes BF-02, BF-10, BF-20 and BF-21; this was done after 1982 when water was diverted from the older headrace canal down to the Trjáviðarlækur stream in order to widen and deepen it as a tailrace canal (Almenna verkfræðistofan (1981)) for the proposed Búrfell Extension.

The excavation mentioned removed much of the loose overburden and pumice and the peat seen in the older borehole logs. Instead, the present proposed excavation will in most cases start in the about 5-15 m thick layer of moraine (glacial till) of Holocene age as shown on the logs and in Figure 7-12 and discussed in Section 7.3. This layer that is now called moraine or glacial till is in many or majority of reports termed a sedimentary rock, tillite. It is not always clear which term is correct. Results of measurements in the moraine in borehole BF-32 are shown in Table 4-1, giving rock mass quality, Qc = 0,1-0,4 and permeability, LU = 2-3.

Below the moraine one enters the Older Búrfell formation (OB) made of scoria and jointed tholeite basalt or basaltic andesite members. The RQD shown on the borehole logs of BF-10, BF-20 and Bf-21 in Appendix D is low and in line with the jointed structure of the rock. Permeability in the OB-layers is low to moderate as shown by the packer test, with LU = 5 to 25, but a detailed study in 1984 (Jón Ingimarsson (1985)) gives more reliable information as discussed in Section 3.6.

A possible fault runs from cored borehole BF-1 down to the surface powerhouse site, see Drawing 16.

Almenna verkfræðistofan hf.

⁷ Jökulberg means tillite, but now this layer is classified as moraine or glacial till.

Figure 7-8 Viewing northeast towards Bjarnalón Reservoir and the headrace canal of Búrfell Station by and above Sámsstaðaklif. Trjáviðarlækur stream entering from centre right and and meeting streams from Skálarfell and turning west in the lower left. The light colour in the centre right and lower left is mainly reflecting the pumice from Hekla in the overburden. Photo: Emil Þór Sigurðsson 16 August 2012.

Figure 7-9 Viewing north-northeast with the headrace canal of the Búrfell Station in the upper right. The light and grey colours are mainly due to pumice from Hekla. Photo: Emil Þór Sigurðsson 16 August 2012.

Figure 7-10 Enlargement of part of Figure 7-9. Well BD-1 is located roughly at the middle of proposed surface powerhouse. Borehole BF-32 is roughly 50 m east of station 0+300 along the proposed penstock and on top of glacial till. Photo: Emil Þór Sigurðsson 16 August 2012.

Figure 7-11 Close-up of well BD-1 that was drilled for pumping test in 1984. As can be seen from the height of the surveyor and the exposed casing the excavation at the place is 3-4 metres. Viewing south with mountain Búrfell in the background. Photo: Snorri P. Snorrason 10 July 2012.

Figure 7-12 Stream cutting through glacial till just north of planned surface powerhouse. Borehole BF-32 being drilled in the background. Photo: Snorri P. Snorrason 12 July 2012.

7.5 Tailrace and side canal

Refer to Drawing 12 for planview of tailrace canal and location of boreholes. For a geological section of this unit of the project refer to Drawing 13 (a and b).

The geology at the tailrace canal is as follows:

On top is a layer of light colored and unconsolidated pumice from Mt Hekla. The pumice layer is several meters thick near the start of the canal where it can reach over 10 m in thickness, but it only reaches half the way down to Fossá, the river that the canal opens into.

Below the pumice is a layer of peat. The peat layer can reach several meters in thickness but it reaches about half the way from the beginning to end of canal.

Below the peat a thick layer of sand is found. The sand layer is of fini-glacial age and appears to be volcanic in origin. It looks fresh, dark or black and is well packed (Almenna verkfræðistofan (1982)), but in some areas the process of palagonitization has begun and has cemented the sand together to some degree, see Figure 7-13, Figure 7-14 and Figure 7-15. A study of the sand layer was performed by Almenna verkfræðistofan (1982) under supervision of Jón Skúlason using thrust/rotary soundings. The sounding rig was able to penetrate some 15 m into the sand or more in some cases see drawings Drawing 13 (a and b). According to the sounding graphs the penetration force varies substantially in the sand but variations from hole to hole appear to be rather small. Most variations are recorded near the upper end of the canal near the Surface powerhouse site. The present design of the tailrace canal does not reach below the sand except in hole A7 see Drawing 13 (a) which is a thrust /rotary sounding where the drill reached glacial till/tillite. This hole is some 300 m downstream from the Surface powerhouse. Apart from the powerhouse and its surroundings and aforementioned hole the centreline of the tailrace canal will be excavated in well packed dark volcanic sand with harder lenses of weak sandstone, most prominent in the lower half of the present canal, see Figure 7-13, Figure 7-14 and Figure 7-15.

Figure 7-13 The tailrace canal and Trjáviðarlækur-stream in 2012. View to the west towards Fossá (not seen in photo) and taken near the middle of the canal. Substantial chunks of the sandstone have been eroded in the flushing operations performed in the area in the early nineteen-eighties. Photo: Snorri P. Snorrason 14 June 2012.

Figure 7-14 Tailrace canal - view to the east. Photo: Snorri P. Snorrason 14 June 2012.

Figure 7-15 Close up look of the sandstone. The lens cap's outer diameter is 68 mm The brownish colour is the formation of palagonite in an early stage. Photo: Snorri P. Snorrason 14 June 2012.

REFERENCES

Almenna verkfræðistofan hf. (1981). Landsvirkjun – Búrfell II. Veita úr Bjarnalóni yfir stíflu í Sámsstaðaklifi. (In Icelandic). Report prepared for Landsvirkjun.

Almenna verkfræðistofan hf. (1982). Stækkun Búrfellsvirkjunar. Rannsóknir á jarðlögum og byggingarefnum. (In Icelandic). Report prepared for Landsvirkjun by Jón Skúlason.

Almenna verkfræðistofan hf. (2012A). *Búrfellsvirkjun. Stækkun um allt að 100 MW.* (In Icelandic). Report of Landsvirkjun number LV-2011-106.

Almenna verkfræðistofan hf. (2012B). Stækkun Búrfellsvirkjunar um 70 MW. Stöðvarhús neðanjarðar, frumhönnun (drög að verkhönnun). (In Icelandic). Report prepared for Landsvirkjun dated 23 November 2012.

Atlas Copco UK Holdings Ltd. (2008). *Odex overburden drilling systems.* Website: http://www.atlascopco.co.uk/Images/6991%200654%2001b_OdexG2_tcm795-1791842.pdf, 19 October 2012.

Ágúst Guðmundsson, Elsa G. Vilmundardóttir and Snorri P. Snorrason (1983). *Geological map of bedrock. Scale: 1:50000. Name: Búrfell – Langalda. Number: 3540 B.* Orkustofnun – Vatnsorkudeild and Landsvirkjun.

Ágústsson, K., A. T. Linde, R. Stefánsson, and S. Sacks (1999). Strain changes for the 1987 Vatnafjöll earthquake in south Iceland and possible magmatic triggering. J. Geophys. Res., 104(B1), pp. 1151–1161.

Árni Hjartarson, Birgir Jónsson, Davíð Egilson, Jón Ingimarsson, Hörður Svarvarsson, Snorri Zóphóníasson og Þórólfur H. Hafstað (1983). *Kver með fróðleiksmolum um vatnajarðfræði, dæluprófanir og lektun*. (In Icelandic). Orkustofnun Vatnsorkudeild, OS-83022/VOD-12 B, 135 pp.

Bjarni Bjarnason (1983). *Búrfell II. Aðrennslisskurður, stöðvarinntak og stöðvarhúsgrunnur. Kjarnaborun 1983.* (In Icelandic). Orkustofnun, OS-83059/VOD-29 B.

Boart Longyear Ltd. (2012). *In-hole tools. Global drilling products catalog.* Website: http://www.boartlongyear.com/c/document_library/get_file?uuid=5b07fb24-453f-473a-b139-df98c7a22347&groupId=10138, 26 June 2012.

Bryndís Brandsdóttir, Matthew Parsons, Robert S. White, Ólafur Guðmundsson, Julian Drew and Bergþóra S. Thorbjarnardóttir (2010). *The May 29th 2008 earthquake aftershock sequence within the South Iceland Seismic Zone: Fault locations and source parameters of aftershocks.* Jökull, vol. 60, pp. 23-46.

Decriem, J., T. Árnadóttir, A. Hooper, H. Geirsson, F. Sigmundsson, M. Keiding, B. G. Ófeigsson, S. Hreinsdóttir, P. Einarsson, P. LaFemina and R. A. Bennett (2010). *The 2008 May 29 earthquake doublet in SW Iceland.* Geophys. J. Int. (2010) 181, pp. 1128–1146.

ELE International (2003). *Operating instructions. Point load test apparatus – 77-0110.* Produced by ELE International in UK, part of Danaher Corporation, USA.

Elsa G. Vilmundardóttir, Ágúst Guðmundsson and Snorri Páll Snorrason (1985). *Jarðfræði Búrfells og nágrennis*. (In Icelandic). Náttúrufræðingurinn, vol. 54, no. 3-4, pp. 97-113.

Freysteinn Sigmundsson, Leifur A. Símonarson, Olgeir Sigmundsson and Ólafur Ingólfsson (2008). *Special issue: The dynamic geology of Iceland*. Jökull, number 58. 422 pp.

Harza Engineering Company International (1963). Burfell project. Project planning report.

Volume I - Summary Letter and Report

Volume II – Appendices.

Haukur Tómasson (1967). *Jarðfræðirannsóknir virkjunarstaðarins við Búrfell.* (In Icelandic). Sérprentun úr Tímariti Verkfræðingafélags Íslands, 3.-6. hefti 1966.

Ingibjörg Kaldal (1980). Búrfell II. Laus jarðlög. (In Icelandic). Orkustofnun - Raforkudeild, IK-80/02.

Jón Ingimarsson (1985). *Mat á lekt jarðlaga á stöðvarhússtæði*. (In Icelandic). Orkustofnun Vatnsorkudeild, OS-85047/VOD-21.

Khodayar, M., Sveinbjörn Björnsson, Páll Einarsson and Hjalti Franzson (2010). *Effect of tectonics and earthquakes on geothermal activity near plate boundaries: A case study from South Iceland.* Geothermics, volume 39, issue 3, September 2010, pages 207–219.

Landmælingar Íslands (1997). GPS-mælingar í grunnstöðvaneti 1993 og ný viðmiðun ISN93 við landmælingar á Íslandi. (In Icelandic with English abstract). Website: http://www.lmi.is/wp-content/uploads/2011/09/hnitaskra_isn93.pdf, 21 November 2012.

Murphy, M.A. and Salvador, A. (1994/1999). *International Stratigraphic Guide - An abridged version.* Edited by Murphy and Salvador. International Subcommission on Stratigraphic Classification of the International Commission on Stratigraphy of the International Union of Geological Sciences. Websites: http://www.episodes.co.in/www/backissues/224/255-271%20Murphy%20.pdf and http://www.stratigraphy.org/column.php?id=Stratigraphic%20Guide, 1 November 2012.

Norwegian Group for Rock Mechanics (2000). *Engineering Geology and Rock Engineering. Handbook No 2.* (For the table of contents, refer to website:

http://www.bergmekanikk.no/ikbViewer/Content/845086/handbook_2_content.pdf, 23 October 2012.

Palmstrom and Broch (2006). *Use and misuse of rock mass classification systems with particular reference to the Q-system.* Tunnels and Underground Space Technology, vol. 21, pp. 575-593. Website: http://www.rockmass.net/ap/78_Palmstrom&Broch_on_Use_and_misuse_of_Q.pdf, 13 November 2012.

Pétur Pétursson (1982). *Búrfell II. Loftboranir á stöðvarhússtæði*. (In Icelandic). Orkustofnun - Vatnsorkudeild, OS82111/VOD52.

Quinones-Rozo, C. (2010). *Lugeon test interpretation, revisited.* United States Society on Dams, Proceedings 2010, pp. 405-414. Website: http://ussdams.com/proceedings/2010Proc/405-414.pdf, 14 November 2012.

Richwalski, S. M. and Roth, F. (2008). *Elastic and visco-elastic stress triggering in the South Iceland Seismic Zone due to large earthquakes since 1706.* Tectonophysics 447 (2008) 127–135.

Snorri Páll Snorrason (1981). *Jarðfræði Sámstaðaklifs*. (In Icelandic). Orkustofnun, greinargerð SPS-81/01.

Staðlaráð Íslands (2005). *ÍST EN 1998-1:2004. Eurocode 8: Design of structures for earthquake resistance - Part 1: General rules, seismic actions and rules for buildings.*

Staðlaráð Íslands (2009). ÍST EN 1998-1:2004/AC:2009. Corrigendum to Eurocode 8: Design of structures for earthquake resistance - Part 1: General rules, seismic actions and rules for buildings.

Staðlaráð Íslands (2010). ÍST EN 1998-1:2004/NA:2010. National Annex to Eurocode 8: Design of structures for earthquake resistance - Part 1: General rules, seismic actions and rules for buildings.

Umhverfisráðuneytið (1999). *Reglugerð 919/1999 um viðmiðun ÍSN93, grunnstöðvanet og mælistöðvar til notkunar við landmælingar og kortagerð.* (Felld brott með rg. nr. 685/2008). (In Icelandic). Website: http://www.reglugerd.is/interpro/dkm/WebGuard.nsf/key2/919-1999, 19 October 2012.

Umhverfisráðuneytið (2011). Reglugerð 1357/2011 um landshæðarkerfi Íslands ISH2004. (In Icelandic). Website:

http://www.reglugerd.is/interpro/dkm/WebGuard.nsf/b7fd33650490f8cf00256a07003476bb/132f6cb 250d573f0002579a50081e445?OpenDocument, 19 October 2012.

Vegagerðin (2009). *Kortlagning á jarðfræði og styrkingum í jarðgöngum.* (In Icelandic). Website: http://www.vegagerdin.is/vefur2.nsf/Files/Kortlagning_bergs_i_gongum/\$file/Kortlagning%20bergs%20%C3%AD%20g%C3%B6ngum.pdf, 17 October 2012.

Drawings

Drawing 01	Búrfell HEP Extension. Location map.
Drawing 02	Búrfell HEP Extension. Surface powerhouse vs. Underground powerhouse on map.
Drawing 03	Búrfell HEP Extension. Surface powerhouse vs. Underground powerhouse on aerial photo.
Drawing 04	Búrfell HEP Extension. Surface powerhouse. Construction units and location of boreholes.
Drawing 05	Búrfell HEP Extension. Underground powerhouse. Construction units and location of boreholes.
Drawing 06	Búrfell HEP Extension. Underground powerhouse alternative. Geology.
Drawing 07	Búrfell HEP Extension. Pressure shaft. Rock quality.
Drawing 08	Búrfell HEP Extension. Underground powerhouse. Rock quality.
Drawing 09	Búrfell HEP Extension. Underground powerhouse alternative. Access Tunnel. Geology.
Drawing 10	Búrfell HEP Extension. Surface powerhouse alternative. Geology.
Drawing 11	Búrfell HEP Extension. Surface powerhouse. Geological section along powerhouse.
Drawing 12	Búrfell HEP Extension. Surface powerhouse. Tailrace canal and previous investigations.
Drawing 13a	Búrfell HEP Extension. Section of Tailrace canal. Geology and Boreholes from 0 – 800 m.
Drawing 13b	Búrfell HEP Extension. Section of Tailrace canal. Geology and Boreholes from 800 – 1700 m.
Drawing 14	Búrfell HEP Extension. Part of the bedrock map "Búrfell-Langalda" from 1983. (Ágúst Guðmundsson, Elsa G. Vilmundardóttir and Snorri P. Snorrason(1983)).
Drawing 15	Búrfell HEP Extension. Part of the "hazard map for Iceland showing reference acceleration on type A ground with 10% probability of being exceeded in 50 years, i.e. with a mean return period of 475 years" and "the near fault area of South Iceland Iowland" (Staðlaráð Íslands (2010) and data on fractures from Páll Einarsson(pers. comm. 2012)).
Drawing 16	Búrfell HEP Extension. Map and Rose Diagram of Faults/Fractures.

Planview of section and boreholes for Underground Powerhouse alternative

Explanations

Explanationo				
	Overburden			
	Basaltic Andesite			
	Scoria			
	Olivine Basalt			
	Conglomerate			
	Porphyritic Olivine Basalt			
	Hyaloclastite			
	Peat			
	Tuff			
	Moraine			
	Tholeiite Basalt			
	Sandstone			
	Section Line			
	Outlines of Underground Proposal			
	Unconformity			
GT	Glacial Till formation			
SB	Sámsstaðaklif basalt			
OB	Older Búrfell basalt			
N/R	Normal/Reverse Geomagnetic polarity			
BĹ	BÚRFELL HEP EXTENSION			

Underground Powerhouse alternative Geology				
	AKS	MAR 2013		
Landsvirkjun	AKS	Page size: A3		
	Approved: SPS			
Almenna verkfræðistofan	Project no: 1477.100	Drawing no: 06		

Longitudinal section of geology along the Access tunnel in Underground Powerhouse alternative

Planview of section and boreholes in Underground Powerhouse alternative

	Overburden
	Basaltic Andesite
	Scoria
	Olivine Basalt
	Conglomerate
	Porphyritic Olivine Basalt
	Tuff
	Tholeiite Basalt
	Sandstone
	Section Line
	Outlines of Underground Powerhouse
	Unconformity
SB	Sámsstaðaklif basalt
ОВ	Older Búrfell basalt

Explanations

N/RNormal/Reverse Geomagnetic polarity

BÚRFELL HEP EXTENSION				
Underground Powerhouse alternative Access Tunnel Geology				
AKS	MAR 2013			
AKS	Page size: A3			
SPS				
Project no: 1477.100	Drawing no: 09			
	P EXTENSIO rhouse alterr Tunnel ogy AKS AKS AKS AFFORME SPS Project ro: 1477.100			

Planview of section and boreholes in Surface Powerhouse alternative

Exp	lanations:
- AP	anadono

		Overburden		
Basaltic Andesite				
		Scoria		
		Olivine Basalt		
		Conglomerate		
		Porphyritic Olivine Basalt		
		Hyaloclastite		
		Peat		
		Tuff		
		Moraine		
		Tholeiite Basalt		
		Sandstone		
		Section Line		
		Outlines of Underground a	Iternative	
		Unconformity		
N/(R	Normal/Reverse Geomagr	etic polarity	
GT	Glacial Till			
SB	Sámsstaðaklif basalt			
ОВ	Older Búrfell basalt			
	PROJECT	BÚRFELL HEP E	EXTENSION	N
		Surface Powerhou Geolog	ise alternati 39	ve
				MAR 2013
		Landsvirkjun	Drawn: AKS Approved:	Page size: A3
	5	MAlmenna	SPS Project no: 1477 100	Drawing no:
		www.verkfræðistofan		

BURFELL HEP EXTENSION

	BURFELL HEP EXTENSION					
Surface powerhouse. Geological section along powerhouse.						
	ÁÓT NOV 2012					
Landsvirkiun	ÁÓT	Page size: A3				
		Approved: SPS				
	Almenna verkfræðistofan	Project no: 1477.100	Drawing no: 11			

BÚRFELL HEP EXTENSION

Geology

Section of Tailrace canal (Reference: Stækkun Búrfellsvirkjunnar - Rannsóknir á jarðlögum og byggingarefnum, Almenna verkfræðistofan og Jón Skúlason, Nóv. 1982.)

Section 45 m off the centerline north Centerline of Tailrace canal Section 45 m off the centerline south Waterlevel Bottom of designed Tailrace canal Outlines of Powerhouse

Tailrace canal:

Longitudinal section of the present canal design superimposed on similar section from 1982. Showing the result of thrust/rotary soundings

- Thrust/rotary sounding
- Sampling hole

	BÚRFELL HEP EXTENSION				
Section of Tailrace canal Geology and Boreholes From 0 - 800 m					
	Landaristica		Date: NOV 2012 Page stze:		
Landsvirkjun	ARS Approved: SPS	A3			
Ŵ	Almenna verkfræðistofan	Project no: 1477.100	Drawing no: 13a		

BÚRFELL HEP EXTENSION Geology

Section of Tailrace canal (Reference: Stækkun Búrfellsvirkjunnar - Rannsóknir á jarðlögum og byggingarefnum, Almenna verkfræðistofan, Jón Skúlason, Nóv. 1982.)

		1
		_

Section 45 m off the centerline north Centerline of Tailrace canal Section 45 m off the centerline south Waterlevel Bottom of designed Tailrace canal Outlines of Powerhouse

Tailrace canal:

Longitudinal section of the present canal design superimposed on similar section from 1982. Showing the result of thrust/rotary soundings

- Thrust/rotary sounding
- Sampling hole

, noseo,	BÚRFELL HEP EXTENSION			
Section of Tailrace canal Geology and Boreholes From 800 - 1700 m				
	Landsvirkjun	Designed: AKS Drawn: AKS	Page stze: A3	
	Approved: SPS			
	Almenna verkfræðistofan	Project no: 1477.100	Drawing no: 13b	

GRUNNSKORT/C	GEOL	OGICAL M	IAP	
		GALD	Δ	
KORT NR 3540-B	-711	UALD	~	
SKÝRINGAR/LEG	END			
ocene rock	TÁKN /	Symbols		
	DEDDE	Basaltgangur Basaltic dyke		
	TATAL	Súr gangur Acidic dyke		
	6 000	Keilugangur Inclined sheet		
fil.>3% It Plag. phen.>3%	308	Mislægi/Unconformity a eldri b yngri hluti/a older t	younger part	
	1 50	Strik og halli Dip and strike		
	brt.	Hraunjaðar/Lava front a eldra byngra hraun /a old	er b younger lava	
		Framhlaup Landslide		
•	/	Brotalina		
jón ára 0,7 m.y.	T	Misgengi		
jón ára 3,7 m.v.	~	Stefna móbergshryggja		
ríma.	1-	Lagdur vegur	ges	
lits	15=	Main road Slóð		
IN (TH) IN (TH) lava flows		Track		
Hraun frá HEKLU og		Dam Stöðvarhús		
HERLUTOGLUM (HH) Lava flows from HEKLA volcanic system	SEGUL	Powerhouse	polarity	
	(1)	Rétt/Normal		
	®	Öfug/Reverse		
	۲	Óviss/Anomal		
	SKAMM Abbrevia	STAFANIR Á MYNDUNU ations for rock formations	Л	
	BS RE	BÚRFELLSSKÓGSMYNDU REYKHOLTSMYNDUN	N	
	SM SA	SÁMSSTAÐAMÚLAMYNDU SANDAFELLSMYNDUN	IN	
	BH KG	STANGAH-JALLSMYNDUN BÚÐARHÁLSMYNDUN KÖLDUKVÍSLARMYNDUN		
No	SKAMM Abbrev	STAFANIR Á HRAUNUN ations for lava flows and	i age BP	
C. C	THd.e THI THN THI THI THI	Nafnlaus hraun um 5500 ára KVÍSLAHRAUN um 4500 ár ÞJÓRSÁRDALSHRAUN >3 BÚRFELLSHRAUN um 300 TJÖRFAHRAUN um 1800 á	a a 0000<4000 ára 0 ára ra	
(and	HH8 HH7	Nafnlaus hraun <5500> 120 TAGLGÍGAHRAUN um 120	00 ára D ára	
	HH6 HH5 HH2,3,4 HH1	HEKLUTAGLAHRAUN <12 STAKAHRAUN SÖLVAHRAUN, um 1200 år LAMBAFITJAHRAUN 1913,	00> 1100 ára a EKR., 1913 AD	
IUR	Ütgefendur:	ORKUSTOFNUN, Vatnsorkudeik Elsis G. Vatnundard-Mic	I-LANDSVIRKJUN	
	Höfundar: Teiknari: Prentun: Ütgåfuår:	Agust Guðmundssonn, Elsa G. Vili Snorri P. Snorrason Guðrún Sigríður Jónsdóttir Kasagerð Reykjavíkur h.1. 1983	mundardóttir.	
	VOD-	jx+840+E0\/ÁgG/SPS 643-GSJ		
	_			
t OS 1:20000 S kort 1:50000	0	1 2	3	4 km
		massin van di = ouALE	1	۲
40 5	BUR	FELL HEP E	XTENSION	
Part of	the be	drock map "E	Búrfell-Lang	alda"
trom 1 Vilmun	983. (A dardót	Agust Guðmu tir and Snorri	P. Snorrase	sa G. on (1983))
20			Designed:	Date:
i ne 📑	1 1 1 1 1	lonial true	AUI Drawn: ÁÓT	NUV 2012 Page size:
AND A DESCRIPTION OF A	TSUC	SVIUSJUII		I AJ

Almenna verkfræðistofan Approved: SPS Project no: 1477.100 14

Appendices

Appendix A	Geology of Iceland and the Hreppar Block.
Appendix B	Bedrock map of Búrfell-area from 1963 (Harza Engineering Company International (1963)).
Appendix C	Logs of cored boreholes 2012.
Appendix D	Logs of cored boreholes from previous investigations.
Appendix E	Pictures of cores.
Appendix F	Logs of rotary pneumatic percussion drilled boreholes.
Appendix G	Mapping of glacial moraine according to (Pétur Pétursson (1982)).
Appendix H	Exploration tunnel in 1962. Location and geological section (Haukur Tómasson (1963)) and studies of progress (Haukur Tómasson (1967)).
Appendix I	Surface powerhouse. Cross sections from thrust rotary soundings (Almenna verkfræðistofan (1982)).

Appendix A

Geology of Iceland and the Hreppar Block.

Appendix A Geology of Iceland and the Hreppar Block.

The Búrfellsvirkjun Hydroelectric Project Extension area is on the Hreppar Microplate (Hreppar Block), just west of the active Eastern Volcanic Zone including less than 10 km northwest of the very active volcano Hekla.

Below are some citations and maps from the general geology literature.

Figure 2. Simplified geological map of Iceland showing historical and Holocene lava flows, glaciers, and the main chronologically-defined units. Modified from Jóhannesson and Saemundsson (1998). – Einfaldað jarðfræðikort af Íslandi. Á kortinu sjást nýleg hraun (rauð og bleik) og helstu jarðsögulegu einingar landsins.

Figure 1. Geological map of Iceland. From Magnús Tumi Gudmundsson et al. (2008). WVZ = Western Volcanic Zone. EVZ = Eastern Volcanic Zone.

Figure 3. Areas that may receive over 20 cm of tephra fall in major explosive eruptions are indicated with circles around volcanoes or fissure swarms where explosive activity is common or the dominant mode of activity. The radius of each circle is defined as the distance to the 20 cm isopach along the axis of thickness for the largest historical and prehistoric explosive eruptions of each volcano. Also shown are populated areas and the main route, Highway 1. The volcanic zones are shown with a shade of gray. -1. Svæði þar sem gjóskufall getur orðið 20 cm eða meira í miklum sprengigosum eru sýnd með hringjum utan um eldstöðvarnar. Geisli hvers hrings ákvarðast af mestu fjarlægð til 20 cm jafnþykktarlínu fyrir stærstu þekkt gos í hverri eldstöð á sögulegum og forsögulegum tíma. Á kortinu sjást einnig byggð svæði og þjóðvegur 1.

Figure 2. Tephra-fall in Iceland in historical and prehistoric time. From Magnús Tumi Gudmundsson et al. (2008).

Figure 3.

Lava-flows from mountain Hekla in historical time. From M.T. Gudmundsson et al. (2008).

Figure 2. Earthquake epicenters 1994–2007 and volcanic systems of Iceland. Volcanic systems and active faults are from Einarsson and Sæmundsson (1987). Epicenters are from the data bank of the Icelandic Meteorological Office. Individual plate boundary segments are indicated: RPR Reykjanes Peninsula Rift, WVZ Western Volcanic Zone, SISZ South Iceland Seismic Zone, EVZ Eastern Volcanic Zone, CIVZ Central Iceland Volcanic Zone, NVZ Northern Volcanic Zone, GOR Grímsey Oblique Rift, HFZ Húsavík-Flatey Zone, ER Eyjafjarðaráll Rift, DZ Dalvík Zone. SIVZ South Iceland Volcanic Zone. Kr, Ka, H, L, V mark the central volcanoes of Krafla, Katla, Hengill, Langjökull, and Vestmannaeyjar. – *Upptök jarðskjálfta 1994–2007, misgengi og eldstöðvakerfi á Íslandi. Skjálftaupptök eru fengin frá Veðurstofu Íslands*.

Figure 4. Earthquakes in Iceland in the period 1994 to 2007. From Páll Einarsson (2008).

Iceland is a platform of dimensions 300x500 km situated astride a divergent plate boundary and on top of a hotspot presumed to be fed by a deep mantle plume ... The eastern part of this mass sits on the European Plate and the western part sits on the North America Plate. ...

The Iceland hotspot has a pronounced effect on the appearance and structure of the plate boundary ... The thick crust produced by the excess magmatism of the hotspot leads to a wider and more complicated plate boundary deformation zone than is observed along normal oceanic plate boundaries. Furthermore, the relative movement of the boundary with respect to the roots of the hotspot leads to unstable boundaries and rift jumps, when crustal blocks or microplates are transferred

from one major plate to the other. The plate boundary zone can be divided into segments that are physiographically relatively homogeneous and possess distinct tectonic characteristics. The segments are more or less oblique to the relative spreading direction of the two major plates. The divergent component of the movements is taken up by diking and normal faulting and is usually concentrated in the fissure swarms of the volcanic systems. The transcurrent component of the movements is often accommodated by strike-slip faulting on faults that are transverse to the plate boundary segment, so-called bookshelf faults, witnessing to the transient nature of the segments. In highly oblique segments, such as the Reykjanes Peninsula Rift and the Grímsey Oblique Rift, both types of active structures occur superimposed on each other. In the South Iceland Seismic Zone, that is almost parallel to the local spreading direction, the bookshelf faults dominate the structure, producing earthquakes as large as magnitude 7. ... A ridge-jump appears to be in progress in South Iceland, where rifting is occurring in two sub-parallel rift zones, the very active Eastern Volcanic Zone and the less active Western Volcanic Zone. The block between them is seismically and volcanically inert and may be defined as a microplate, the Hreppar Microplate. It is rotating in response to the southward propagation of the Eastern Volcanic Zone and corresponding recess of the Western Volcanic Zone. ...

In Southern Iceland the plate boundary has two branches and the block between them does not show evidence of active deformation or volcanism. Earthquake epicenters are almost completely lacking This block appears to fulfill the criteria of a microplate and has been termed the Hreppar Microplate. The southern boundary of the Hreppar Microplate is marked by the South Iceland Seismic Zone where large, strike-slip earthquakes occur. The northern boundary is marked by diffuse volcanism of the Central Iceland Volcanic Zone (CIVZ) and the relative movement across it seems to be slow. (Páll Einarsson (2008)).

Sites west of the WVZ have velocities consistent with a location on stable North America, while sites east of the EVZ have velocities consistent with a location on stable Eurasia. Sites located on the Hreppar block, between the EVZ and WVZ, have velocities that are intermediate in rate and approximately parallel to the plate motion direction, and thus show no evidence of internal deformation of the block within uncertainties....

Our surface velocity data are well fit by a simple model of dike injection and deformation on the EVZ and WVZ, with no permanent deformation in the intervening region, the Hreppar block. This suggests that the velocity data in the Hreppar block fit a rigid microplate or block

model, with the block deforming only by elastic strain accumulation on its edges. ...

Figure 16 shows site velocities for south Iceland relative to the Hreppar block. The coseismic corrected velocities are used here. The five sites used to define the Hreppar block fit the rigid block model to better than 1 mm/yr. Studies of propagating ridges and overlapping spreading

centers predict that the overlap region (e.g., the Hreppar Block) will act either as a rigid block or deform internally via shear ... Our data suggest that the Hreppar Block in fact is rigid, at least to the level of our data uncertainty.

(LaFemina et al. (2005))

Figure 5. The Hreppar block or microplate in South-Iceland. From LaFemina et al. (2005).

Páll Einarsson argues "... that the South Iceland Seismic Zone is a transient feature, migrating sideways in response to propagation of the Eastern Volcanic Zone." (Einarsson (1991)). Khodayar and Franzson (2007) further add to this: "The transform zone of the SISZ is 20-30 km wide and some 80 km long, with typical shear fractures. Such fractures are also observed in the Thjórsárdalur volcano and throughout the Hreppar rift-jump block ... We interpret the existence of a typical transform-zone fracture pattern far away from the present location of the zone implies to mean that the transform zone itself must have migrated southward by a distance corresponding to the current width of the SISZ ... while Thjórsárdalur was forming in the Eastern Rift Zone and shifting away from this rift zone."

It believed that some northerly faults in the Hreppar Block connect to source faults of major earthquakes within the active SISZ (Khodayar et al. (2010)).

References

Einarsson, P. (1991). *Earthquakes and present-day tectonism in Iceland.* Tectonophysics, volume 189, issues 1–4, 10 April 1991, pages 261–279.

Khodayar, M. and Hjalti Franzson (2007). *Fracture pattern of Thjórsárdalur central volcano with respect to rift-jump and a migrating transform zone in South Iceland.* Journal of Structural Geology, volume 29 (2007), pp. 898-912.

Khodayar, M., Sveinbjörn Björnsson, Páll Einarsson and Hjalti Franzson (2010). *Effect of tectonics and earthquakes on geothermal activity near plate boundaries: A case study from South Iceland.* Geothermics, volume 39, issue 3, September 2010, pages 207–219.

P. C. LaFemina, T. H. Dixon, R. Malservisi, T. Árnadóttir, E. Sturkell, F. Sigmundsson, and P. Einarsson (2005). *Geodetic GPS measurements in south Iceland: Strain accumulation and partitioning in a propagating ridge system.* Journal of Geophysical Research, vol. 110, B11405, doi:10.1029/2005JB003675, 2005.

Magnús Tumi Gudmundsson, Guðrún Larsen, Ármann Höskuldsson and Ágúst Gunnar Gylfason (2008). *Volcanic hazards in Iceland*. Jökull, number 58, special issue: The dynamic geology of Iceland. pp. 251-268.

Páll Einarsson (2008). Plate boundaries, rifts and transforms in Iceland. Jökull, number 58, pp. 35-58.

Appendix B

Bedrock map of Búrfell-area from 1963 (Harza Engineering Company International (1963)).

ñ., .

Appendix C

Logs of cored boreholes 2012.

Explanations of symbols

Rock magnetisation Normal / Reverse / Anomalous

Permeability Interval (in metres) and LU values

kN = average readings from point load test MPa = point load strength index IS 50

Water level depth in meters (date)

15,5-24,7m >100 LU 5,0 kN

11,0 MPa

Cuttings samples

Point Load Test (PLT)

Casing

Q - system of rock mass quality

 $Q = \frac{RQD}{J_{p}} \times \frac{J_{r}}{J_{a}} \times \frac{J_{w}}{SRF}$

RQD (Rock Quality Designation) Jn (joint set number) Jr (joint roughness number) Ja (joint alteration number) Jw (joint water reduction factor) SRF (Stress Reduction Factor)

 $Q_{c} = \frac{RQD}{J_{n}} \times \frac{J_{r}}{J_{a}} \times \frac{J_{w}}{SRF}$

Jw and SRF are evaluated as 1/1 in the boreholes Q $_{\rm c}$ = Q evaluated from core sample from borehole

Explanations of formation

- FG Finiglacial
- GT Glacial till
- SB Sámsstaðarklif basalt
- SM Sámsstaðarmúli group
- OB Older Búrfell group

SU.	Aln	nenna	Búrfell HEP Extension			Contractor RFS		Drill Ein	ráður	/HMH
	1 Lan	udsvirkiun	BF-30 Cored hole			Place: Sáms Date of dril	staðaklif Ing:	Drill thic NQ/3' Drawn:	oDE	X 45 mm core
Coordinate	^{s:} ISN93	X: 46099	3.08 Y: 400336.45 Elev.: 268.39 m.a.s.l.			June Drawing nr	2012	ÁÓ Approve	T/SP	S
					-	1 af 4		SPS	5	
Elevation [m.a.s.l.]	Depth [m]	Soil profile	Sample Description	Depth [m]	Casing PLT	Core [%]	RQD % Q _c 10/30/50/100	GWI	Peri 5	neability (LU)
266,1	- 2 - - 4 -		Overburden Sand with frostlifted fragments of bedrock. Conglomerate Top OB High content of acid rocks light in colour	2	3" ODE	55 _ 4182= 39 _	31/0/0/0 0/0/0/0 0/0/0/0			
	- 6 -		with rhyolitic sand and pebbles, groundmass fine sand to coarse sand. The core is light in hand. Pebbles well rounded.	- 6 -		94	55/17/0/0			
	- 8 - -			8 –		64	45/27/17/0			
	10_		$^{*}Qc = \frac{RQD}{J} \times \frac{J}{J} \times \frac{J}{SRF}$	10		– 10	58/25/7/4 0/0/0/0			
	12_		$Qc = \frac{58}{9} \times \frac{1.5-2}{2-4} \times \frac{1}{1} = 2,4 - 6,5$	12_		17 _	0/0/0/0	vel 15.6.2012 🕂		
	14_	D.O.		14		77	59/25/0/0	2 4 Vater lev		
	16–			16–		-	_	16.6.201		
	- 18- -		Conglomerate Darkish colour, angular rhyolite stones, up to 12 cm. Groundmass basaltsand and some silt, layering week. Well cemented, light in hand.	18	4,7 kN 2,2 MPa	98	89/68/55/38 	Water leve		
	20-			20_		98	94/48/0/0		7,2 -	33,6m
	22–			22–		84 _	74/0/0/0		0,,	
	- 24-		Conglomerate Rich with rhyolite up to 2 cm. Groundmass	24–		94	65/45/0/0 			
			fine sand to coarse sand with rhyolite. Well cemented, pebbles rounded. Some discolouring due to alteration.	26–		97	54/14/0/0	ļ		
	28–			28–		-	_	12		
	- 30–		Conglomerate Well cemented, groundmass basaltic silt and sand. Poorly rounded basaltic stones up to 10 cm.	30–		96	73/11/0/0	/ater level 18.6 20 el 2.7 2012		
	- 32-		Weak layering in places.	32–	4,6 MPa	102	64/15/0/0	Vater le		
234,5	34–			34-		93 _	60/0/0/0			
	-		Vesicular Vesicular filled with silt and grayish clay.	-		101	62/0/0/0			
	36–		— — — — — — — Gray, medium grained, dense somewhat jointed. Joints coated or filled with light minerals - onal	36–		97	49/0/0/0		3	3,6 - 42,1m 2,3 LU
	- 38-		and partly silt filled.	38–		95	64/0/0/0 55/0/0/0 - 64/0/0/0			
	- 40-		$Qc = \frac{64}{6-9} \times \frac{2-3}{3-4} \times \frac{1}{1} = 2,7-10,7$	40-		96	- 80/25/0/0			
227,6	- 42-		Tholeiite Basalt Vesicular Vesicles filled with silt and opal, vesicles	42-		101	57/0/0/0			
	44-		twisted and elongated. Dense, reddish in colour somewhat jointed. Joints coated with gray or light minerals	44-		100	56/0/0/0 63/0/0/0			
	-		Very dense $Qc = \frac{56}{6-9} \times \frac{2-3}{3-4} \times \frac{1}{1} = 3,1-9,3$			100_ 59 = 53	= 0/0/0/0 0/0/0/0			39,6 - 54,6m
	46-		Scoria Coarse angular stones and very silt filled. Scoria fragments vesicular.	40-		65	24/0/0/0 - 24/7/0/0			
	50		$Qc = \frac{24}{12-15} \times \frac{3-4}{4} \times \frac{1}{1} = 1,2-2,0$	50		82				

S/	Alm	enna		Búrfell HEP Extension			Contractor RFS		Drill Eini	áður/	нмн	
av	V verktræ	distofan		BF-30			Place: Sáms	staðaklif	Drill thic NQ/3"	kness: ODEX	45 mi	m core
	Land	svirkjun		Cored hole			Date of dri	ling: 2012	Drawn: ÁÓ	T/SPS		
Coordinate	^{s:} ISN93	X: 460998	3,08 Y: 400336,	,45 Elev.: 268,39 m.a.s.l.			Drawing nr		Approve	ed:		
Elevation	Depth	Soil	Sample	Description	Depth	CasIng		RQD % Q _c	GWT	Perm	eability	y (LU)
217,9				Basaltic Andesite Dark,fine grained groundmass, hard, strong			96 -	- 29/0/0/0 - 25/0/0/0		5	10	15 20
214,9	54		$QC = \frac{12}{12} \times \frac{3}{3-4} \times \frac{1}{1} = \frac{1}{1,0-2,1}$	and irregularly jointed, filled with silt. Conglomerate and Sandstone Fine grained	54		100 188 =	16/0/0/0 - 42/0/0/0 - 41/0/0/0			΄ 6 Lί	J
			Vesicular	Hard, dark and fine grained, spotted in apperance. Dense, dark, joints discontinuous and rough. Heavily jointed, gray and light minerals coat joint	- 56		100 _ 107 _ 100	_ 14/0/0/0 _ 38/0/0/0 _ 17/0/0/0 _ 0/0/0/0				
210,5	58			$Qc = \frac{17}{12-15} \times \frac{2-3}{3} \times \frac{1}{1} = 0,8-1,4$	- 58 _		85 _ 100 _ 101	0/0/0/0 17/0/0/0 32/0/0/0				
	- 60 _		Vesicular and reddish in	Basaltic Andesite Dard and fine grained, a few plg phenochrysts.	60		51 _ 88	0/0/0/0 0/0/0/0 45/0/0/0		54,6	63 - 63 20 LU	,6m J
	62						86 _ 75 _ 81	0/0/0/0 11/0/0/0 36/0/0/0				
	64		Dense	Scoracious and filled with silt, core recovery	64		106 _ 53	46/0/0/0 2 1/0/0/0 0/0/0/0				-
	66		Core loss 5cm band of silt	poor.	66		48 - 56 _	0/0/0/0				
	 68		Core loss	Qc = $\frac{21}{12 \cdot 15} \times \frac{2 \cdot 3}{3 \cdot 4} \times \frac{1}{1} = 0,7-2,6$	68		⁵⁹ _ 31	- ^{59/0/0/0} 20/0/0/0				
	70		Vesicular and scoracious	Basaltic Andesite Dark, hard and fine grained, few plg phenochrysts spotty appearance. Dense	70 _		136 _	56/27/0/0		53,6	6 - 75	.,4m
			Core loss	and heavily jointed, joints coated with gray secondary minerals and silt.	72		20 _	9/0/0/0			SILU	
	74 _	N		Qc = $\frac{31}{12}$ x $\frac{2-3}{2-4}$ x $\frac{1}{1}$ = 1,3-3,9	74	23,4 kN 11,0 MPa 19,9 kN	79 93 _	35/0/0/0 				
192,5	76 _		Core	Scoria filled with Silt/opal	- 76	9,4 MPa	98 ⁸⁶	= 0 <u>70/0/0</u> _ 73/0/0/0				
	78		probably Scoria	$Q_{c} = \frac{10}{45 \cdot 100} \times \frac{2.3}{5} \times \frac{1}{2} = 0.3 - 1.0$	78		7 34 ⁻	4/0/0/0 10/0/0/0 19/0/0/0				
	80 _				80		44 _	- 14 -		73,() - 82 3 LU	,6m
	82		Vesicular large vesicles	Basaltic Andesite Dark, hard and fine grained, very jointed	82	13,0 kN	62 66 _	29/0/0/0 0/0/0/0				
	84			joint surfaces. Spotted appearance.	84	6,1 MPa	92 - 65	37/0/0/0 - 32/0/0/0 22/0/0/0				
180.8	86 — —		Core loss	$Qc = \frac{32}{12 \cdot 15} \times \frac{2 \cdot 3}{2 \cdot 4} \times \frac{1}{1} = 1, 1 - 4, 0$	86		155 _ 75 _ 84	_ 63/0/0/0 _ 17/0/0/0 _ 52/0/0/0				
100,0	88 -		60 cm Core recovery	Scoria Scoria partly filled with sandstone.	88 —		62	37/0/0/0				
	90_			Basaltic Andesite Dark, hard, heavy and fine grained.	90_		- 95	- 46/0/0/0 49/20/0/0		85,7	5 - 93 15 LU	3,6m J
	92			Flow bands visible and joints form along the flow bands. Very jointed and joint surfaces coated with gray or light	92		97 _ 90 _	= 52/0/0/0 71/0/0/0				
	94	N		minerals. Joints rough and undulating.	94—	31,0 kN	96 	61/0/0/0				
	96-			Qc = $\frac{46}{12}$ x $\frac{2-3}{2-3}$ x $\frac{1}{1}$ = 2,6-5,8	96—	27,0 kN 12,7 MPa	90 -	-		91,6	- 102 13 LU	2,6m
	98-				98-		97 90	67/0/0/0 				

8/	Alm	enna		Búrfell HEP Extension			Contractor RFS		Drill Einr	áður/H'	мн	
GAZ	⊗ verkfræ	ðistofan		BF-30			Place: Sáms	staðaklif	Drill thick NQ/3"	odex 4	5 mm	core
	Lands	svirkjun		Cored hole			Date of dri	ling: 2012	Drawn: ÁÓT			
Coordinate	^{s:} ISN93	X: 46099	98,08 Y: 400336	5,45 Elev.: 268,39 m.a.s.l.			Drawing nr		Approve	<u>/01/0</u>		
Elevation	Depth	Soil	0 - mm la		Depth	Casing	3 at 4	ROD % Qa	SPS GWT	Permea	ability (<u>(LU)</u>
[m.a.s.l.]	[m]	profile	Sample	Description Baseltie Andesite continued	[m]	PLT	[%] 79	10/30/50/100 0/0/0/0		5	10 1	5 20
167,6	102 _		Scoria 	Tholeiit Basalt Dark gray, fine grained, dense. Faintly flowbanded, jointing along flowbands	102		106 ⁼ 21	= 0/0/0/0 6/0/0/0		91,6 - 43	102,6 3 LU	3m
	 104		Vesicular	common. Micropores and vesicles coated with opal and gray minerals. Joints partly coated.	104	27,3 kN	109	39/0/0/0 - 28/0/0/0				
162,7	106 _			$Qc = \frac{28}{9 \cdot 12} \times \frac{2 \cdot 3}{2 \cdot 3} \times \frac{1}{1} = 1,5-4,6$	106_	12,9 MPa	106 _	79/0/0/0		96,6	- 111	,6m
				Scoria Well cemented in places. Filled with silt and opal. Brownish in places	108		48	34/17/0/0		1		
	_			$Qc = \frac{54}{9 \cdot 12} \times \frac{3 \cdot 4}{2 \cdot 3} \times \frac{1}{1} = 4,5 \cdot 11,9$	_		-	_ 54/16/0/0				
	110 _ _ •			Comparatively dense and competant in the lower part.	110		98	80/23/0/0				
	112				112		_	-	-	108.6	120) 6m
	 114			Tholeiite Basalt	114		94	13/0/0/0		1	4 LU	
	_			Dark gray, fine grained, dense, heavy, very jointed.Joints coated with brownish	-	19,9 kN	_	30/0/0/0				
	116			and rough.	116	9,4 MPa 1,3 kN	98	43/0/0/0				
	 118			Qc = $\frac{30}{12 \cdot 15}$ x $\frac{2 \cdot 4}{2 \cdot 3}$ x $\frac{1}{1}$ = 1,3-5,0	118	0,6 MPa 19,5 kN	87 _	0/0/0/0	-			
	_			Conglomerate	- 1	9,2 MPa 3, <u>4 k</u> N	97 20_ [_]	42/0/0/0				
148,6	120 _	· · · ·	$Q_{c} = \frac{78}{9} \times \frac{2}{34} \times \frac{1}{4} =$	Pebbles of various origin, basalt, rhyolite, tephra, up to 6 cm. Matrix is fine sand. Joints moderate. Roundness - medium.	120	1,6 MPa	115 = 75 _	= 115/0/0/0 _ 75/38/0/0 _ 78/13/0/0				
146,3			4,3-5,8	Joints partly induced by drilling and handling. Joints fresh or partly coated.	122		97	80/0/0/0				
	 124		Qc = $\frac{43}{12} \times \frac{2-3}{2-3} \times \frac{1}{1} = 2,4-5,4$	Tholeiite Basalt Very jointed. Some joints healed, calsedon and rough minerals in joints.	- 124		91 103 _	37/0/0/0 43/0/0/0 58/0/0/0		117,6	129	∂,6m
143,8	 126			Porphyritic Olivine Basalt Olivine phenochrysts 4-5% up to 5 mm.	126	7,7 kN	95	88/47/0/0 _ 89/51/9/0				
		R	6,6-14,8	Medium grained, dark, little jointed. Greenish clay minerals coat the joint surfaces, some joints healed. Some secondary minerals rough.	128	3,6 MPa	99	90/54/17/0				
138,9 138,2	130 —		$Qc = \frac{71}{9} \times \frac{1.5-2}{2-4} \times \frac{1}{1} = 3,$	0-7,9 Acid Tuff Mixture of light and dark tuff Breaks between hands.	130 —		90= 103 _	_0/0/0/0 71/30/0/0 _79/33/0/0				
136,4	132	<u>/</u>		Scoria Reasonably well cemented and filled with silt.	132		90	68/21/0/0				
	_		Vesicular	Tholeiite Basalt	-		_	-				
	134	++		Dark gray, fine grained with irregular flow bands. Both dark greenish and light gray clay minerals. Joint surfaces control with	134		95	88/58/43/0				
	136 —	R	Dense — — — — — —	minerals.	136 —		-	_80/42/25/0		120 6		1.6m
	139		Vesicular	Qc = $\frac{80}{12}$ x $\frac{2-3}{2\cdot3}$ x $\frac{1}{1}$ = 4,5-10,0	100	16 <u>.6</u> kN	102	89/54/33/33		128,0		,011
	-		Dense		-	7,8 MPa	97 -	50/0/0/0				
128,9	140 —			Scoria	140—		77	51/0/0/0				
	142			Reasonably well cemented in places but with weak lenses. Red in colour. Filled	142.		-	42/5/0/0				
	-		$1 \frac{1}{10} \frac{1}{10}$	with SHL	-		59 _	32/0/0/0				
	144 —			Tholeiite Basalt	144-		100	40/0/0/0				
	- 146		Vesicular	brownish gray, medium grained, heavily jointed. Joints coated wth black and dark	-		76	0/0/0/0				
	146 -			sniny minerals. Light green and red brownish minerals are also present. Some of the joints	146		92 95	29/0/0/0				
	148 —		Dense	are nealed. $Q_{C} = \frac{42}{124} \times \frac{24}{54} \times \frac{1}{4} = 1 4-7 0$	148—			31/23/0/0		138,6	+ 153 1 LU	\$,6m
			2	~~ 12-15 ^ 2-4 ^ 1 · 1,7 · 1,0	150		98	57/0/0/0				
L	100		1		1 130			0.101010	· · · · ·		1	

SI.	Alm	enna			Búrfell HEP Extension			Contractor RFS	:	Drill Ein	ráður/Hl	ИН
	No ventrae	orstoran		-	BF-30			Place: Sáms	staðaklif	Drill thic NQ/3	kness: ODEX 4	5 mm core
	Land	svirkjun			Cored hole			June	<u>2012</u>	ÁÓ	T/SPS	
Coordinate	^{s:} ISN93	X:	460	998,08 Y:	400336,45 Elev.: 268,39 m.a.s.l.			Drawing n 4 af 4	r.:	Approve SPS	ed: S	
Elevation [m.a.s.l.]	Depth [m]	Soil profile		Sample	Description	Depth [m]	CasIng PLT	Core [%]	RQD % Q _c 10/30/50/100	GWT	Permea	bllity (LU) 0 15 20
	 152			Dense	Tholeiite Basalt continued Fine horizontal flow bands. Fewer joints in the lower part of the layer.		27,0 kN	98 9 <u>-</u> 97	57/0/0/0 0/0/0/0 79/15/0/0		138,6 4	- 153,6m ·LU
	154 156	R		Vesicular	Tholeiite Basalt Brownish gray with spotty appearance. Weak flow bands, medium grained, top meter reddish in colour	154 156		100 = 39	= 0/0/0/0 22/11/0/0 37/7/0/0			
				Dense	Qc = $\frac{37}{9-12}$ x $\frac{2-4}{2-3}$ x $\frac{1}{1}$ = 2,0-8,1	158_		107	61/0/0/0			
100.6	-		/:		Scoria		27.0 kN	25 _	13/0/0/0			
108,6	160				Porphyritic Olivine Basalt Phenochrysts of plagioclase 5% size ~2mm.	160	12,7 MPa	71	37/0/0/0 34/10/0/0			
	102	-	+-	Vesicular	Some vesicles are filled with light brown or gray secondary minerals.	-	27 <u>.0</u> kN	88 _ 53	25/0/0/0		153,6	- 174,1m
	164 _				Qc = $\frac{34}{9-15}$ x $\frac{2-3}{2-3}$ x $\frac{1}{1}$ = 1,5-5,7	164	12,7 MPa 27,0 kN	73	62/27/0/0			
101,7	100					- 001	12,7 MPa	98	45/45/45/0			
	168			• Core loss	Tholeiite Basalt Fine grained, dark gray, porous. Secondary	168		12 _	0/0/0/0			
	170 _	R		Vesicular	minerals are dark greenish and light brown. Some joints filled up to 2mm. Some are only coated. Slippery minerals found in the most	170		48	17/0/0/0 13/0/0/0			
	172			Core loss	$\Omega_{C} = \frac{17}{17} \times \frac{24}{2} \times \frac{1}{7} = 0.7.2.8$	172		66 _	0/0/0/0			
94,3	 174			Bottom 94,3	$QU = \frac{12 - 15}{2 - 3} \times \frac{1}{2 - 3} \times \frac{1}{2 - 3} \times \frac{1}{2 - 3}$	174		88	48/0/0/0			
	 176					176						
						178						
	- 180 -					180						
	_					_						
	182					182						
	184					184						
	186					186						
	188 —					188						
	 190					190_						
	_ 192_					192_						
						194_						
	106					106						
	130-					- 190						
	198— —					198—						
	200					200						

ST	Alm	ienna	Búrfell HEP Extension			Contractor RFS	:	Drill Einr	áður/H	мн	
0.0	Verktr	ædistofan	BF-31			Place: Sáms	staðaklif	Drill thic NQ/3"	<ness: ODEX 4</ness: 	5 mm co	ore
	Lan	dsvirkjun	Cored hole			Date of dri	Iling: 2012	Drawn:	[/SPS		
Coordinates	ISN93	X: 46109	6,89 Y: 400469,09 Elev.: 266,71 m.a.s.l.			Drawing n	r.:	Approve	d:		
Elevation	Depth	Soil	Sample Description	Depth	Casing	Core	RQD % Qc	GWT	> Permea	b ili ty (LU	J)
[m.a.s.l.]	[m]	profile	Overburden	[m]	PLT	[%]	10/30/50/100		5	10 15	20
	-		Sand with frostlifted fragments of	-	3" 00						
264,1	2 _		bedrock.	2 -		71 -	23/0/0/0				
	4		Basaltic Andesite			-	47/0/0/0				
	·]		Dark fine grained slightly porphyritic plg phenochrysts 1-2mm. Slightly			93 -	47/0/0/0				
	6 _		flowbanded, very jointed.	6 _		70 - 62 -	0/0/0/0				
	_			-		66 57 -	14/0/0/0				
	8 _		$Qc = \frac{21}{12 \cdot 15} \times \frac{24}{2 \cdot 4} \times \frac{1}{1} = 0,7-3,6$	8 _	-	93	20/0/0/0				
257,8	-	0 0 0		- 1		85 105	0/0/0/0 26/0/0/0				
	10_		Conglomerate	10_		-					
	-		semi angular up to ø10 cm. Mostly rhyolite.			99	80/67/54/0				
	12_		Groundmass sand to coarse sand. No visible layering. Basalt pebbles fairly	12_	-	_	Ļ				
	-	° • • • • •	rounded.	-							
	14	·] • • • • •		14_]	97	76/58/23/0				
	16_		 Poorly	16_		31 _	0/0/0/0				
	_		commented			26	7/0/0/0				
	18_	· 7: . D. '	l groundmass	18_		94	56/0/0/0				
	-			-		-	+				
	20 _			20_		93	77/13/0/0				
	-		Conglomerate - fine grained section			_	L				
	22 _		Groundmass sandstone and pebbles up to ø2cm. Greenish in colour. Well cemented. Small amount	22_			70/25/12/0				
	- 24		of rhyolite fragments.	24		99	79/13/0/0				
	24	° • • • • •]	-	+				
	26 –	·); . D.	$\Omega_{c} = \frac{50}{2} \times \frac{2}{3} \times \frac{1}{3} = 2.8 \times 3.7$	26		100	93/30/17/0				
	_			-							
	28 –			28_		-	+				
	-			-		100	98/36/0/0				
	30 —		Conglomerate - coarse section	30-		-	-				
	32		Groundmass coarse tephra sand, light in colour, rhyolite rock fragments, semi angular. Common	32		74	57/15/0/0				
	52 -	о о [.]	groundmass pebble size 2-4 cm. Some rounded basalt pebbles present.	52-		14	37713/0/0		12,6 3,	- 48,1m 5 LU	I
	34 —			34-		-	-				
	_	· · · · · · · · · · · · · · · · · · ·	Conglomerate - brownish gray	-	-	100	63/19/19/0				
	36 —	0.0.	Hyaloclastite in groundmass. Rocky fragments mostly basalt up to 5 cm.	36-		-	-				
	-		Semi angular, a few semi rounded.			100 -	70/0/0/0				
228,2	38 —		— — — — — — Conglomerate - groundmass sandstone	38 -		100 _					
	40_		Olivine Basalt Vesicular Medium grained. Vesicles filled or partly filled	40_		78 -	51/0/0/0				
	_		with light minerals of opal and some brownish clay minerals jointed horizontal joints most	_		96	64/10/0/0				
	42—		$\frac{1}{2} \frac{1}{2} \frac{1}$	42-	-	100 -	52/7/0/0				
	_		$Q_{C} = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{3} \times \frac{1}{3$			100 =	76/43/0/0				
	44—			44-		94	45/0/0/0				
	-		Dense			-	+				
	46—			46-	1	88	56/0/0/0				
219,2	48_		Scoria of tholeiite basalt Filled with silt and sand sandstone.	48]	94	25/0/0/0				
218,5	01-		Bottom 218,5	1 -	-	-	Ť				
	50			50							

\$7	Alm	ienna	Búrfell H	EP Extension			Contractor: RFS		Drill Einra	áður/	′НМН	
exc	∞ verkfr	æðistofan		BF-32			Place: Sáms	staðaklif	Drill thick	ness: ODEX	(45 mm	n core
1	Lan	dsvirkjun	C	ored hole			Date of drl	ling:	Drawn: Δ΄ΟΤ	/909	3	
Coordinates	^{s:} ISN93	X: 460809	,06 Y: 400131,84 Elev.: 1	81,87 m.a.s.l.			Drawing nr		Approved	d:	<u> </u>	
Elevation	Depth	Soil	Sample Descripti	on	Depth	CasIng	1 at 2 Core	RQD % Q _c	GWT	Perm	neab ili ty	(LU)
[m.a.s.l.]	[ṁ]	profile	Description		[ṁ]		[%]	10/30/50/100		5	10	15 20
	-		Man made fill of glacia	len l till	-	3" OD						
	2 _		0		2 _							
178,6	4_			Top GT		-	_	_				
	_						29	9/0/0/0				
	6 _		Glacial m	orgina	6 _							
	-		Stones and pebbles of v	arious origin and size	_		-	-				
	8 _		up to 10 cm. Lenses of places. Some layering v	silt found in various visible. Core is partly	8 _		40	18/0/0/0				
	-		flushed to the surface d Core recovery poor or y	uring drill operation.	-		_	-				
	10_		part but it improves to s Lens of silt part Many joints are du	some extent in the lower						3	- 21.7	m
	12_		and handling.	ie to arming operation	12_		48	12/0/0/0			2 LÜ	
	-		Core strength is low.		_		-	-				
	14 _				14_		6	0/0/0/0				
	-				_		0	0/0/0/0				
	16_				16_			-				
	10		$Q_{C} = \frac{10}{15-20} \times \frac{1-2}{2-2}$	² x ¹ = 0,1-0,7	10			_				
	10-						6 _	0/0/0/0				
	20—				20							
	-				_		24	0/0/0/0				
	22_				22_			- 3/0/0/0	-			
	-				-		-	-				
	24 —				24		12 _	- 0/0/0/0				
	 26				26 _			7/0/0/0				
	_				_		68	3/0/0/0				
	28—		Lens of silt		28-		-					
	_				_		-	-				
	30 —				30		44	- 0/0/0/0		3	- 84 3	m
					32_		· · -				3 LŮ	
	_						62	0/0/0/0				
	34 —				34		67 -					
	_				_		22	0/0/0/0				
	36 —				36		50	0/0/0/0				
	38				38							
	50 -						95	0/0/0/0				
	40—				40		-	_				
	-				_		47 _	- 0/0/0/0				
	42—				42		85	0/0/0/0				
							25	0/0/0/0				
	44						35	0/0/0/0				
	46—			Dtm CT	46		10	0/0/0/0				
	_		Basaltic A	Andesite Top OB			-	-				
	48—		Dark fine grained, hard large but few. The laye	, flow banded. Vesicles r breaks along the flowbanding.	48		100	0/0/0/0				
133,0			Qc = $\frac{37}{12}$ x $\frac{2-3}{2-3}$	x ¹ ₁ = 2,0-4,6	50		49	- 37/0/0/0 26/0/0/0				

\$7	Aln	nenna	Búrfell HEP Extensi	ion			Contractor RFS	:	Drill Einra	áður/HMH
dvc.	Verktr	ædistofan	BF-32				Place: Sáms	staðaklif	Drill thick	ness: ODEX 45 mm core
	Lan	udsvirkjun	Cored hole				Date of dri	lling: 2012	Drawn:	/SPS
Coordinates	^{s:} ISN93	X: 460809	9,06 Y: 400131,84 Elev.: 181,87 m.a.s.l.				Drawing n	r.:	Approved	1:
Elevation	Donth	Cail			lonth	Cosing	2 af 2		SPS	Pormoability (LLI)
[m.a.s.l.]	[m]	profile	Sample Description		[m]	PLT	[%]	10/30/50/100°	GWI	5 10 15 20
120.4	-		Basaltic Andesite continued		_		64	44/0/0/0		
130,4	52 _	R	Olivine Basalt Vesicular Silt/opal in vesicles and joints, up to 1mm thick.		52 _		93	41/0/0/0		
107.2	54		Scoria Filled with silt/opal		54		57	39/24/0/0		
127,5	-		Tholente Basalt Fine grained, flowbanded, dark gray.		-		60	0/0/0/0		
	56 -		Joints filled with silt/opal in the upper	part.	56_		44 -	30/0/0/0		52,2-62,1m
		(R)					45 	0/0/0/0		310
	50-		Reasonably $QC = \frac{1}{12} \times \frac{2}{2-3} \times \frac{1}{1} = 1, 1-2, 6$ dense		50-		86	47/0/0/0		
	-				_		73 _ 83	11/0/0/0		
	60 _	• • • • • •	Scoria		60_		65	55/0/0/0		
121,0	-		Vecicular Tholeiite Basalt		-		62 _	0/0/0/0		
	62_		Dark gray, a bit flowbanded.		62_		97	76/13/0/0		
	-		Reasonably vesicular. Joints sometimes filled with brownish secondary minerals up to 3cn	n thick.	-			47/6/0/0		
	64 _		dense $Q_{C} = \frac{47}{12.45} \times \frac{2-3}{2.4} \times \frac{1}{2} = 2.1-5.5$	9	64 _		61	27/0/0/0		
	_				_		77			
115,9	66 -		Scoria Basaltic Andesite	earance	66_		57 - 64 -			
	_		Joints coated with brownish secondary min	nerals.			80	0/0/0/0		
	68		$Qc = \frac{10}{12 \cdot 15} \times \frac{2 \cdot 3}{2 \cdot 4} \times \frac{1}{1} = 0,3 \cdot 1,3$	3	68		85	8/0/0/0 30/0/0/0		
	00-		Scoria		00_		0 _	0/0/0/0		
	_		Filled with silt and		-		15 —	0/0/0/0		
	70 _		poor core recovery $Qc = \frac{10}{15-20} \times \frac{1-2}{2-3} \times \frac{1}{1} = 0,$	2-0,3	70_		33	0/0/0/0		
110,53	-	· · · · /			-		-	_		62,13 - 84,3m 3 LU
	72_		Tholeiite Basalt		72_		90	37/0/0/0		
	-		Dark gray, spotty appearance. Joints		-		-	30/2/0/0		
	74 —		coated or sometimes filled. Dark clay in the lowerpart but light in colour at		74 _		22	0/0/0/0		
	-		top.		-		88 _	38/38/0/0		
	76 —				76 _		93 —	15/0/0/0		
	-	R			-		93 _	14/0/0/0		
	78—		$\Omega_0 = \frac{30}{3} \times \frac{2-3}{3} \times \frac{1}{2} = 1.7.2.9$		78_		91	22/0/0/0		
	-		$QC = \frac{12}{12} \times \frac{2}{2} \times \frac{1}{1} = 1, 7 = 3, 0$		_		84 _	32/0/0/0		
	-08				80		94	44/0/0/0		
	82—				82-		-	┝		
	_				-		100	65/0/0/0		
97,5	84 —		Rottom 07.5		84 -		56 _	16/0/0/0		
	-		סטעטווו אויאס		-					
	86 —				86 —					
	- 88									
	-				-					
	90_				90_					
	92—				92—					
	-				-					
	94–				94_					
	96—				96—					
	-				_					
	98				98-					
	100				100					

Appendix D

Logs of cored boreholes from previous investigations.

Explanations of symbols

Rock magnetisation Normal / Reverse / Anomalous

Permeability Interval (in metres) and LU values

kN = average readings from point load test MPa = point load strength index IS 50

Water level depth in meters (date)

15,5-24,7m >100 LU 5,0 kN

11,0 MPa

Cuttings samples

Point Load Test (PLT)

Casing

Q - system of rock mass quality

 $Q = \frac{RQD}{J_{p}} \times \frac{J_{r}}{J_{a}} \times \frac{J_{w}}{SRF}$

RQD (Rock Quality Designation) Jn (joint set number) Jr (joint roughness number) Ja (joint alteration number) Jw (joint water reduction factor) SRF (Stress Reduction Factor)

 $Q_{c} = \frac{RQD}{J_{n}} \times \frac{J_{r}}{J_{a}} \times \frac{J_{w}}{SRF}$

Jw and SRF are evaluated as 1/1 in the boreholes Q $_{\rm c}$ = Q evaluated from core sample from borehole

Explanations of formation

- FG Finiglacial
- GT Glacial till
- SB Sámsstaðarklif basalt
- SM Sámsstaðarmúli group
- OB Older Búrfell group

87	Aln	nenna		Búrfell HEP Extension			Contractor Jarðb	oranir	Drill Nið	andi (\$	S5)	
exc	∞ verkfr	æðistofan		BF-1			Place: Sáms	staðir	Drill thic 55 mr	kness: n/BQ 36	i,5 mm co	ore
	Lan	dsvirkjun		Cored Hole			Date of dri	ling: 3/7 1980	Drawn:	3		
Coordinates	^{s:} ISN93	X: 460838	3,804 Y:40	0321,516 Elev.: 223,40 m.a.s.l.			Drawing nr		Approve	ed:		
Elevation	Depth	Soil	Sample	Description	Depth	CasIng	Core	RQD % Q _c	GWT	Perm	eabllity (L	_U)
[111.8.5.1.]	լոյ	profile		Overburden	[[11]	0 2 m	[/0]	10/30/30/100		5	10 15	20
221,4	2 _			Rock fragments and pebbles, from the bedrock below.	2 _	down t	7 37 =	0/0/0/0				
	_		Vesicular	Basaltic Andesite Top OB Strongly flowbanded breaks along flowbanding	_	obably	75 _	0/0/0/0				
	4 _			Dark, very fine grained, hard and heavy, flowbanding irregular in the top, almost horizontal below 4 m	4 _	asIng pr	87 96	23/0/0/0 70/0/0/0 62/0/0/0	- P			
	_		Dense	Secondary mineral mostly opal. 3 joint directions,	-	l∎ö	108 _	34/0/0/0 27/6/0/0				
216,6	6 _		1	secondary minerals. $Qc = \frac{27}{9-12} \times \frac{2-3}{3-4} \times \frac{1}{4} = 1,1-3$	6 _		93	47/19/0/0	L.			
	8 _	· /::	Scoria	Reddish in color, vesicular, filled with silt/opal.	8 _		60	0/0/0/0				
	_			$Qc = \frac{10}{12.15} \times \frac{3.4}{3.4} \times \frac{1}{3} = 0.5 - 1.1$	-		79	0/0/0/0				
213,4	10_				10_		91	-				
	-			Basaltic Andesite	-		90	43/0/0/0				
	12_			Dark, very fine grained, joints coated.	12_		-	27/0/0/0		-		
	 14		Dense		14_		82	26/0/0/0				
	_			Qc = $\frac{27}{12}$ x $\frac{2-3}{3-4}$ x $\frac{1}{1}$ = 1,1-2,3			250 =	= 0/0/0/0				
	16_				16_		94	23/0/0/0				
205.8	-		1		-		87 _	0/0/0/0				
,-	18_			Core recovery poor, irregular fragments of scoria filled	18_		39	0/0/0/0				
	20_		Scorio	with silt.	20_		16	0/0/0/0				
	_	12.	Scoria	$Qc = \frac{10}{12.15} \times \frac{3}{2.4} \times \frac{1}{4} = 0.5 - 0.8$	-					0- 15	Om	
	22_				22_		8	0/0/0/0		2 LU		
200,3	-				-		33 _ 50 _	0/0/0/0				
	24 —		 Scoracious	Basaltic Andesite Spotty appearance, dark, very fine grained,	24		62	9/0/0/0				
				flowbanded. Elongated vesicles, very jointed, joints break along flowband direction. Upperpart	26		21	0/0/0/0				
	_		Vesicular	very jointed. Joints partly filled with opal/silt.			56 _ 66	0/0/0/0 22/0/0/0				
	28—				28–		67	0/0/0/0 7/0/0/0				
	-		 Slightly		-		85	21/0/0/0				
	30 —		vesicular	$Qc = \frac{10}{12} \times \frac{3}{3-4} \times \frac{1}{1} = 0,6-0,8$	30 –		70 ±					
	-				-		47 E	= 8/8/8/8				
191,2	32-		 Scoria				61	0/0/0/0				
	34		 		34		28 -	0/0/0/0				
	_	· · · · .	very jointed	Vesicular, filled with opal/silt, thick fillings. Very jointed light in band	-		55 =	0/0/0/0				
	36—	/ :	<u> </u>	, e., jointee, ngin in nand.	36 –		52 -	11/0/0/0				
	-	1	Vesicular	$\Omega_{\rm C} = \frac{17}{100} \times \frac{3}{10} \times \frac{1}{10} = 0.0 - 1.4$	–		''-	17/0/0/0				
	38 —		T 1	\sim 12-15 \wedge 3-4 \wedge 1 ⁻ 0,3 ⁻ 1,7	38 –		85	47/0/0/0				
			Very jointed		40-		73	0/0/0/0				
183,0	_		<u>↓</u>		-		93	0/0/0/0				
	42—		Slightly	Tholeiite Basalt	42–		60	18/0/0/0				
	-		fine	Micro phenocrysts present, joints coated or filled with light colored secondary minerals.	-		86	58/0/0/0				
	44—		vesicles		44		35 -	0/0/0/0				
	46		<u> </u> 		46-		74 69	- 19/0/0/0 - 19/0/0/0				
	-0-			$Qc = \frac{12}{12-15} \times \frac{5}{3-4} \times \frac{1}{4} = 0,6-1,6$			82	12/0/0/0				
	48—		Dense 		48–		100	0/0/0/0				
	_				-		42 -	0/0/0/0				
	50				50 F	 Reference:	Jarðfræði S	U/U/U/U Sámstaðaklifs, Sno	rri Páll S	norraso	n, SPS-8	0/02.

$\begin{array}{ c c c c } \hline \hline$	87	Alm	ienn	a		Búrfell HEP Extension			Contractor Jarðb	oranir	Drill Nið	andi	(S5)	
Corrected baleDescriptionCorrected baleCorrected	GAZ	Ø verktr	æðistof	an		BF-1			Place: Sáms	staðir	Drill thie BQ	kness: 36.5	5 mm	core
Control (SNG) X 400303 2001 Y 400302 1.56 Else: 223.40 mas.d. Oxfant (New York) Mail (New York) 100 0.4 0.4 SP 2.04 SP 100 0.4 0.4 SP SP SP 100 0.4 0.4 SP SP SP SP 100 0.4 0.4 SP SP <td></td> <td>Lan</td> <td>dsvirkju</td> <td>n</td> <td></td> <td>Cored Hole</td> <td></td> <td></td> <td>Date of dri</td> <td></td> <td>Drawn:</td> <td><u> </u></td> <td>/</td> <td>0010</td>		Lan	dsvirkju	n		Cored Hole			Date of dri		Drawn:	<u> </u>	/	0010
Problem Constraint Constraint Constraint Constraint Constraint 100 10	Coordinates	^s ISN93	X	46083	」 8.804 Y: 40	0321,516 Elev.; 223,40 m.a.s.l.			2/6 - 0 Drawing n	8/7 1980	AK Approv	5 ed:		
Process Part Sorry Description Part Par Par<					-,	,			2 of 4		SP	s		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Elevation [m.a.s.l.]	Depth [m]	S pro	Soil ofile	Sample	Description	Depth [m]	Casing PLT	Core [%]	RQD % Q _c 10/30/50/100	GWT	Per 5	meabl	lity (LU) 15 20
$ \frac{132}{12} $ $ 1$		_					_		50 = 535 =					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	171,9	52 _	- -	-+-+	 T		52 _		6 – 02					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		_			li.		_	-	- 52	- 30/0/0/0				
HA Considered in the second and account of the point is present to the non-fragility of the second and account of the point is present to the non-fragility of the second and account of the point is present to the non-fragility of the second and the point is present to the non-fragility of the second and the point is present to the non-fragility of the second and the point is present to the non-fragility of the second and the point is present to the non-fragility of the second and the point is present to the non-fragility of the second and the point is present to the non-fragility of the second and the non-fragility of the second and the non-fragility of the second		54			Dense		54		102	43/0/0/0				
	168,4	_				Conglements								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		56 _	0.0	0	2	Groundmass sandy, zeolites in micropores, pebbles	56		90 -	30/0/0/0				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		_	°.C	р. ^т . С	Fine	2-4 cm of various origin. Blend of rounded or subrounded pebbles. Layer is jointed some core loss.	-			30/0/0/0				
mathematical sector Communication Problem for call fragments A-22 on Sitt mathematical sector mathematical sector Model Secret Filed with radial outperdent sector mathematical sector mathematical sector mathematical sector Model Secret Filed with radial outperdent sector mathematical sector mathematical sector mathematical sector mathematical sector Model Numal Product mathematical sector Mathematical sector Mathematical sector Mathematical sector mathematical sector Model Numal Product mathematical sector Mathematical sector Mathematical sector Mathematical sector Mathematical sector Mathematical sector Model Product mathematical sector Mathematical	164.0	58	٠.			Upper part well cemented. Qc = $\frac{30}{0.42} \times \frac{1-1.5}{2} \times \frac{1}{3} = 0.8-1.7$	58 _		92	23/0/0/0				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	164,9	_		N. ()	Coarse Hole collapsed	Pebbles more angular, rock fragments 5-25 cm. Silt	-			22/0/0/0				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	163,4	60 _	•	•	lafter drilling	lenses present, lower part seems to be more fragile.	60		99 100 =	0/0/0/0				
a_1 b_1 <t< td=""><td>162,3</td><td>_</td><td></td><td>┍╍┍╸┙</td><td></td><td>Filled with reddish colored sand.</td><td>-</td><td></td><td>84 -</td><td>0/0/0/0</td><td></td><td></td><td></td><td></td></t<>	162,3	_		┍╍┍╸┙		Filled with reddish colored sand.	-		84 -	0/0/0/0				
Protocoling and least over the solution of th		62			 Sound	Porphyritic Basalt 4-6%	62		85	60/52/0/0				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		-		R)	+	Phenochrysts 1-2 mm plg. Variably vesicular, zeolites,	-		71	36/17/0/0 47/15/0/0				
1577 \mathbf{r}		64			Very jointed	$Qc = \frac{36}{9} \times \frac{2 \cdot 3}{3 \cdot 4} \times \frac{1}{1} = 2 \cdot 4$	64			47/0/0/0				
Light in back, davk and kigh grains in give Fin.13.1Image: Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2"13.1Image: Colspan="2">Image: Colspan="2"13.2Image: Colspan="2">Image: Colspan="2"13.2Image: Colspan="2">Colspan="2"13.2Image: Colspan="2">Colspan="2"13.2Image: Colspan="2">Colspan="2"13.2Image: Colspan="2">Colspan="2"13.2Image: Colspan="2">Colspan="2"13.2Image: Colspan="2">Colspan="2"13.2Image: Colspan="2">Colspan="2"13.2Image: Colspan="2">Colspan="2"13.2Image: Colspan="2">Colspan="2"14.2Image: Colspan="2">Colspan="2"15.2Image: Colspan="2">Colspan="2"14.3Image: Colspan="2">Colspan="2"15.2Image: Colspan="2">Colspan="2"14.4Image: Colspan="2">Colspan="2"15.2Image: Colspan="2"Image: Colspan="2"15.2Image: Colspan="2"Image: Colspan="2"Image: Colspan="2"15.2Image: Colspan="2"Image: Colspan="2	157.7	-				Acid Tuff $Q_{C} = \frac{23}{6.42} \times \frac{1-1.5}{2.4} \times \frac{1}{3} = 0.5-1.3$	-		64 87	38/0/0/0				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		66				Light in hand, dark and light grains in upper part, vague layering, 40 cm weak layering. Bottom 30 cm	66		83	23/0/0/0 23/0/0/0				
VesicularDatk brewnish in color and very fire gained.154.1745117700155.1SoriaSoria155.1Cor $Q_C = \frac{12}{2} \times \frac{23}{2} \times \frac{1}{2} = 0.8 - 1.5$ 156.17211157.1Cor $Q_C = \frac{12}{2} \times \frac{23}{2} \times \frac{1}{2} = 0.8 - 1.5$ 168.470 $Q_C = \frac{12}{2} \times \frac{23}{2} \times \frac{1}{2} = 0.8 - 1.5$ 168.470 $Q_C = \frac{12}{2} \times \frac{23}{2} \times \frac{1}{2} = 0.8 - 1.5$ 168.470 $Q_C = \frac{12}{2} \times \frac{23}{2} \times \frac{1}{2} = 0.8 - 1.5$ 168.470 $Q_C = \frac{12}{2} \times \frac{23}{2} \times \frac{1}{2} = 0.8 - 1.5$ 17.1Poor core recovery. Layer branks up. Vesicular, vesicular diffiel joints. Biglit colored secondary minerals.18.470Soria18.4Well consolidated, jointed, core eroded during drilling. Vesicular, vesicles kulft filled with opal and give scondary minerals.18.470Soria18.4VesicularTholefile Basalt rise to medium grained, dark gray. A bit brownish, vesicular, with medium to file vesicles, vesicles coaled ory.19.2SoriaPoorly cemented, fine vesicles, coaledory.20.4SoriaSoria19.5SoriaPoorly cemented, fine vesicles, coaledory.21.6SoriaVesicular10.5SoriaPoorly cemented, fine vesicles, coaledory.21.6SoriaSoria19.6SoriaSoria & $\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = 0.6 - 1.3$ 21.6SoriaSoria & $\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = 0.6 - 1.3$ 22.7SoriaC	156,2	_			·	Tholeiite Basalt			65 =	0/0/0/0				
151) 20 Soria Sardy Hillings, high hand, poorly cemented. 0 62 140000 9 1527 72 Soria Sardy Hillings, high yearshings, high to hand, poorly cemented. 72 11 00000 74 12 Core is crodul 73.4-7.4.1m. Casted filled joints. 74 11 00000 74 12 Core is crodul 73.4-7.4.1m. Casted filled joints. 74 12 00000 18.4 74 Soria Well consolidated, jointed, core rould during drilling. Vesicular, vesicles half filled in the during drilling. Vesicular, vesicles half filled in the during drilling. Vesicular, vesicles half filled in the during drilling. Vesicular, vesicles contex with opal and ight scendary macrais. Light in the during drilling. Vesicular, vesicles half filled in the during drilling. Vesicular, vesicles contex with opal and some zeolities or calsedony. 74 93 34/15000 18.4 Vesicular Tholelite Basalt 76 93 37/14000 21/0000 19.3 Soria Vesicular Core $\frac{12}{12} \times \frac{23}{24} \times \frac{1}{4} = 0.9-1.8$ 74 60 77 93 37/14000 19.4 Vesicular Core $\frac{12}{12} \times \frac{23}{24} \times \frac{1}{4} = 0.9-1.8$ 74 60000 77 900000 93 90		68			Vesicular	Dark brownish in color and very fine grained. Vesicles up to 15 mm, joints coated with opal	68		74	51/17/0/0				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	154,1	_			6 a a mila	and brownish secondary minerals.	_		-	-				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	152.7	70		·		Sandy minings, right in hand, poorly cemented. $Oc = \frac{18}{10} \times \frac{2-3}{10} \times \frac{1}{2} = 0.8-1.5$	70		62	14/0/0/0				
Poor core recovery. Layer breaks up. Vesicular, jointed, core is coorded 73.8-41.10. Costed/filled joints, ight colored secondary minerals. Table in costa control is in the costa control is in the costa cost in the costa co	, í					Tholeiite Basalt				18/4/0/0		0- 18 2 LU	50m	
18.4 74 i Core arded iight colored secondary minerals. 74 17		12				Poor core recovery. Layer breaks up. Vesicular, iointed, core is eroded 73.8-74.1m, Coated/filled joints.	12-		11	0/0/0/0				
188,4 76 Geroded 72 Geroded 72 Geroded 74 Geroded 93 Geroded Geroded 93 Geroded 93 Geroded 44/00/00 93 44/00/00 93 44/00/00 93 44/00/00 93 44/00/00 93 44/00/00 93 34/15/000 93 34/15/000 93 34/15/000 93 34/15/000 93 34/15/000 93 37/14/00 21/00/00 21/00/00 21/00/00 93 37/14/00 21/00/00 93 37/14/00 21/00/00 93 37/14/00 21/00/00 93 37/14/00 21/00/00 93 37/14/00 21/00/00 93 32/17/14/00 21/00/00 93 37/14/00 21/00/00 93 37/14/00 21/00/00 93 30/00 93 90 90 90 </td <td></td> <td>74</td> <td></td> <td></td> <td>L Core</td> <td>light colored secondary minerals.</td> <td>74</td> <td></td> <td>17 -</td> <td></td> <td></td> <td></td> <td></td> <td></td>		74			L Core	light colored secondary minerals.	74		17 -					
$\begin{bmatrix} 13.5 \\ 13.5 $	149.4	74			eroded		/4		92 - 110 -	26/0/0/0 27/0/0/0				
145.7Soria <th< td=""><td>148,4</td><td>76</td><td>•</td><td>1.</td><td></td><td>Well consolidated, jointed, core eroded</td><td>76</td><td>]</td><td></td><td>44/0/0/0</td><td></td><td></td><td></td><td></td></th<>	148,4	76	•	1.		Well consolidated, jointed, core eroded	76]		44/0/0/0				
hand. $Qc = \frac{1}{67} \times \frac{1}{64} $	145.7	_	•	• • •	Scoria	with opal and light secondary minerals. Light in	_		93	44/0/0/0				
Tholeite Basalt Fine to medium grained, dark gray. A bit brownish, vesicular with neglinum of me vesicles, vesicles coated with opal and some zeolites or calsedony.93 $34/150/0$ 22 $Qc = \frac{21}{12} \times \frac{23}{34} \times \frac{1}{3} = 0.9 \cdot 1.8$ ac ac ac ac 24.0 $Qc = \frac{21}{12} \times \frac{23}{34} \times \frac{1}{3} = 0.9 \cdot 1.8$ ac ac ac 24.0 Bc Bc Bc Bc Bc 24.0 Bc Bc Bc Bc <t< td=""><td>,.</td><td>78</td><td></td><td></td><td></td><td>hand. $Qc = \frac{44}{9-12} \times \frac{2-3}{3-4} \times \frac{1}{7} = 1,9-4,9$</td><td>78</td><td></td><td>-</td><td>-</td><td></td><td></td><td></td><td></td></t<>	,.	78				hand. $Qc = \frac{44}{9-12} \times \frac{2-3}{3-4} \times \frac{1}{7} = 1,9-4,9$	78		-	-				
Vesicular Vesicular Vesicular Vesicular Vesicular Vesicular vith medium to fine vesicles, vesicles coated vith opal and some zeolites or calsedory. $Cc = \frac{21}{12} \times \frac{2.3}{3.4} \times \frac{1}{4} = 0,9-1,8$ $Cc = \frac{21}{12} \times \frac{2.3}{3.4} \times \frac{1}{4} = 0,6-1,0$ $Cc = \frac{12}{12} \times \frac{2.3}{3.4} \times \frac{1}{4} = 0,6-1,0$ $Cc = \frac{15}{12} \times \frac{2.3}{3.4} \times \frac{1}{4} = 0,6-1,3$ $Cc = \frac{15}{12} \times \frac{1}{12} \times \frac{1}{12}$		_		R	37 1 1	Tholeiite Basalt	_		93	34/15/0/0				
with opal and some zeolites or calsedony. $Qc = \frac{21}{12} \times \frac{2-3}{3-4} \times \frac{1}{4} = 0,9-1,8$ $Qc = \frac{21}{12} \times \frac{2-3}{3-4} \times \frac{1}{4} = 0,9-1,8$ $Qc = \frac{21}{12} \times \frac{2-3}{3-4} \times \frac{1}{4} = 0,9-1,8$ $Qc = \frac{21}{12} \times \frac{2-3}{3-4} \times \frac{1}{4} = 0,9-1,8$ $Qc = \frac{21}{12} \times \frac{2-3}{3-4} \times \frac{1}{4} = 0,9-1,8$ $Qc = \frac{21}{12} \times \frac{2-3}{3-4} \times \frac{1}{4} = 0,9-1,8$ $Qc = \frac{21}{12} \times \frac{2-3}{3-4} \times \frac{1}{4} = 0,9-1,8$ $Qc = \frac{10}{12} \times \frac{2-3}{3-4} \times \frac{1}{4} = 0,9-1,8$ $Qc = \frac{10}{12} \times \frac{2-3}{3-4} \times \frac{1}{4} = 0,9-1,8$ $Qc = \frac{10}{12} \times \frac{2-3}{3-4} \times \frac{1}{4} = 0,9-1,8$ $Qc = \frac{10}{12} \times \frac{2-3}{3-4} \times \frac{1}{4} = 0,9-1,0$ $Qc = \frac{10}{12} \times \frac{2-3}{3-4} \times \frac{1}{4} = 0,9-1,0$ $Qc = \frac{10}{12} \times \frac{2-3}{3-4} \times \frac{1}{4} = 0,9-1,0$ $Qc = \frac{10}{12} \times \frac{2-3}{3-4} \times \frac{1}{4} = 0,9-1,3$ $Qc = \frac{15}{12} \times \frac{2-3}{3-4} \times \frac{1}{4} = 0,9-1,3$ $Qc = \frac{15}{12} \times \frac{2-3}{3-4} \times \frac{1}{4} = 0,9-1,3$ $Qc = \frac{15}{12} \times \frac{2-3}{3-4} \times \frac{1}{4} = 0,9-1,3$ $Qc = \frac{15}{12} \times \frac{2-3}{3-4} \times \frac{1}{4} = 0,9-1,3$ $Qc = \frac{15}{12} \times \frac{2-3}{3-4} \times \frac{1}{4} = 0,9-1,3$ $Qc = \frac{15}{12} \times \frac{2-3}{3-4} \times \frac{1}{4} = 0,9-1,3$ $Qc = \frac{15}{12} \times \frac{2-3}{3-4} \times \frac{1}{4} = 0,9-1,3$ $Qc = \frac{15}{12} \times \frac{2-3}{3-4} \times \frac{1}{4} = 0,9-1,3$ $Qc = \frac{15}{12} \times \frac{2-3}{3-4} \times \frac{1}{4} = 0,9-1,3$ $Qc = \frac{15}{12} \times \frac{2-3}{3-4} \times \frac{1}{4} = 0,9-1,3$ $Qc = \frac{15}{12} \times \frac{2-3}{3-4} \times \frac{1}{4} = 0,9-1,3$ $Qc = \frac{15}{12} \times \frac{2-3}{3-4} \times \frac{1}{4} = 0,9-1,3$ $Qc = \frac{15}{12} \times \frac{2-3}{3-4} \times \frac{1}{4} = 0,9-1,3$ $Qc = \frac{15}{12} \times \frac{2-3}{3-4} \times \frac{1}{4} = 0,9-1,3$ $Qc = \frac{15}{12} \times \frac{2-3}{3-4} \times \frac{1}{4} = 0,9-1,3$ $Qc = \frac{15}{12} \times \frac{2-3}{3-4} \times \frac{1}{4} = 0,9-1,3$ $Qc = \frac{15}{12} \times \frac{2-3}{3-4} \times \frac{1}{4} = 0,9-1,3$ $Qc = \frac{10}{10} \times \frac{10}{1$		80 _			Vesicular	Fine to medium grained, dark gray. A bit brownish, vesicular with medium to fine vesicles vesicles coated	80		-	-				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		_				with opal and some zeolites or calsedony.	-	-	93	37/14/0/0				
$Qc = \frac{4}{12} \times \frac{4}{34} \times \frac{1}{4} = 0, 9-1, 8$ $Qc = \frac{4}{12} \times \frac{4}{34} \times \frac{1}{4} = 0, 9-1, 8$ $Qc = \frac{4}{12} \times \frac{4}{34} \times \frac{1}{4} = 0, 9-1, 8$ $Qc = \frac{4}{12} \times \frac{4}{34} \times \frac{1}{4} = 0, 9-1, 8$ $Qc = \frac{4}{12} \times \frac{4}{34} \times \frac{1}{4} = 0, 9-1, 8$ $Qc = \frac{4}{12} \times \frac{4}{34} \times \frac{1}{4} = 0, 9-1, 8$ $Qc = \frac{4}{12} \times \frac{4}{34} \times \frac{1}{4} = 0, 9-1, 8$ $Qc = \frac{4}{12} \times \frac{4}{34} \times \frac{1}{4} = 0, 9-1, 8$ $Qc = \frac{4}{12} \times \frac{4}{34} \times \frac{1}{4} = 0, 9-1, 8$ $Qc = \frac{4}{12} \times \frac{4}{34} \times \frac{1}{4} = 0, 9-1, 8$ $Qc = \frac{4}{12} \times \frac{4}{34} \times \frac{1}{4} = 0, 9-1, 8$ $Qc = \frac{10}{12} \times \frac{1}{34} \times \frac{1}{4} = 0, 6-1, 3$ $Qc = \frac{15}{12} \times \frac{2}{34} \times \frac{1}{4} = 0, 6-1, 3$ $Qc = \frac{15}{12} \times \frac{2}{34} \times \frac{1}{4} = 0, 6-1, 3$ $Qc = \frac{15}{12} \times \frac{2}{34} \times \frac{1}{4} = 0, 6-1, 3$ $Qc = \frac{15}{12} \times \frac{2}{34} \times \frac{1}{4} = 0, 6-1, 3$ $Qc = \frac{15}{12} \times \frac{2}{34} \times \frac{1}{4} = 0, 6-1, 3$ $Qc = \frac{15}{12} \times \frac{2}{34} \times \frac{1}{4} = 0, 6-1, 3$ $Qc = \frac{15}{12} \times \frac{2}{34} \times \frac{1}{4} = 0, 6-1, 3$ $Qc = \frac{15}{12} \times \frac{2}{34} \times \frac{1}{4} = 0, 6-1, 3$ $Qc = \frac{15}{12} \times \frac{2}{34} \times \frac{1}{4} = 0, 6-1, 3$ $Qc = \frac{15}{12} \times \frac{2}{34} \times \frac{1}{4} = 0, 6-1, 3$ $Qc = \frac{15}{12} \times \frac{2}{34} \times \frac{1}{4} = 0, 6-1, 3$ $Qc = \frac{15}{12} \times \frac{2}{34} \times \frac{1}{4} = 0, 6-1, 3$ $Qc = \frac{15}{12} \times \frac{2}{34} \times \frac{1}{4} = 0, 6-1, 3$ $Qc = \frac{15}{12} \times \frac{2}{34} \times \frac{1}{4} = 0, 6-1, 3$ $Qc = \frac{15}{12} \times \frac{2}{34} \times \frac{1}{4} = 0, 6-1, 3$ $Qc = \frac{15}{12} \times \frac{2}{34} \times \frac{1}{4} = 0, 6-1, 3$ $Qc = \frac{15}{12} \times \frac{2}{34} \times \frac{1}{4} = 0, 6-1, 3$ $Qc = \frac{15}{12} \times \frac{2}{34} \times \frac{1}{4} = 0, 6-1, 3$ $Qc = \frac{15}{12} \times \frac{2}{34} \times \frac{1}{4} = 0, 6-1, 3$ $Qc = \frac{15}{12} \times \frac{2}{34} \times \frac{1}{4} = 0, 6-1, 3$ $Qc = \frac{15}{12} \times \frac{1}{34} \times \frac{1}{34} = 0, 6-1, 3$ $Qc = \frac{15}{12} \times \frac{1}{34} \times \frac{1}{34} = 0, 6-1, 3$ $Qc = \frac{15}{12} \times \frac{1}{34} \times \frac{1}{34} = 0, 6-1, 3$ $Qc = \frac{1}{12} \times \frac{1}{34} \times \frac{1}{34} = 0, 6-1, 3$ $Qc = \frac{1}{12} \times \frac{1}{34} \times \frac{1}{34} = 0, 6-1, 3$ $Qc = \frac{1}{12} \times \frac{1}{34} \times \frac{1}{34} = 0, 6-1, 3$ $Qc = \frac{1}{12} \times \frac{1}{34} \times \frac{1}{34} = 0, 6-1, 3$ $Qc = \frac{1}{12} \times \frac{1}{34} \times \frac{1}{34} = 0, 6-1, 3$ $Qc = \frac{1}{12} \times \frac{1}{34} \times \frac{1}{34} = 0, 6-1, 3$ Qc		82 —				24 2 2 4	82			21/0/0/0				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-				$Qc = \frac{21}{12} \times \frac{2-3}{3-4} \times \frac{1}{1} = 0,9-1,8$	-		50 I 74	0/0/0/0				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		84					84		97	10/0/0/0				
136,3 86 86 86 82 00000 134,6Scoria TowniaPoorly cemented, fine vesicles, coated/filled joints, reddish in color. Large vesicles in the lower part, vesicles filled/coated. $Qc = \frac{12}{12.15} \times \frac{3}{.34} \times \frac{1}{3} = 0.6-1.0$ 88 $29/00/0$ 90Tholeiite Basalt Jointed, joints coated/filled with opal and brownish secondary clay minerals. Fine grained, gray in color. 90 88 $29/00/0$ 129.6 94 50 $00/00/0$ 90 $13/00/0$ 94 96 89 $21/00/0$ 96 128,5 96 96 $13/00/0$ 96 94 96 96 $15/0/0/0$ 95 $00/00/0$ 91 $00/00/0$ 96 96 96 96 97 $00/00/0$ 91 $00/00/0$ 98 96 96 96 99 $90/00/0$ 91 $00/00/0$ 90 96 96 96 91 96 96 96 92 96 96 96 93 $90/00/0$ 91 $90/00/0$ 94 96 96 96 95 $90/00/0$ 91 $90/00/0$ 96 96 $90/00/0$ 97 $90/00/0$ 91 98 $90/00/0$ 91 99 $90/00/0$ 91 90 91 $90/00/0$		-					-		52	8/0/0/0				
136.3ScoriaPoorly cemented, fine vesicles, coated/filled joints, redish in color. Large vesicles in the lower part, vesicles filled/coated. $Qc = \frac{12}{12.15} \times \frac{3}{3.4} \times \frac{1}{4} = 0.6-1.0$ 8829/0/0/09090Tholeiite Basalt908829/0/0/092949013/0/0/094ScoriaQc = $\frac{15}{12} \times \frac{2.3}{3.4} \times \frac{1}{4} = 0.6-1.3$ 9494ScoraciousQc = $\frac{15}{12} \times \frac{2.3}{3.4} \times \frac{1}{4} = 0.6-1.3$ 949596Nesicular9694129.696RVesicularTholeiite Basalt989815/0/0/094989815/0/0/0989821/0/0/0989815/0/0/0989821/0/0/0999013/0/0909013/0/0129.696R949898129.69815/0/0/0989815/0/0/0999913/0/0/09013/0/0/0910/0/0/0929315/0/0/0949815/0/0/0950/0/0/0969815/0/0/0970/0/0/09821/0/0/098100990/0/0/090100910/0/0/0929393100/0/09494950/0/0/09696970/0/0/09		86 —					86 —		82 -	0/0/0/0				
ScoriaScoriareddish in color. Large vesicles in the lower part, vesicles filled/coated. $Qc = \frac{12}{12.15} \times \frac{3}{34} \times \frac{1}{3} = 0.6 - 1.0$ 88 27 120000 70 120000 3500000 9090908829/0/0/0908829/0/0/092929490909090909094949013/0/0/09013/0/0/0909013/0/0/0129,6949494550/0/0/09494550/0/0/096968921/0/0/09615/0/0/09615/0/0/096124,0100968921/0/0/0910/0/0/0910/0/0/0	136,3	-				Poorly cemented, fine vesicles, coated/filled joints	-		67	0/0/0/0				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	124 5	88 —	• • •		Scoria	reddish in color. Large vesicles in the lower part,	88 —		70 -					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	134,6	_		- T - Г	Vesicular	vesicles filled/coated. Qc = $\frac{12}{12-15} \times \frac{3}{3-4} \times \frac{1}{4} = 0,6-1,0$	-		-					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		90 —					90—		88	29/0/0/0				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		-				Tholeiite Basalt	-		50 = 93 _	= 0/0/0/0 0/0/0/0				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		92—				secondary clay minerals. Fine grained, gray in color.	92—		90 _	13/0/0/0				
128,5 94 Scoracious Qc = $\frac{15}{12} \times \frac{2.3}{3.4} \times \frac{1}{1} = 0, 6-1, 3$ 94 55 0/0/0/0 96 96 96 96 96 96 96 15/0/0/0 15/0/0/0 98 98 98 98 98 98 79 0/0/0/0 91 0/0/0/0 124,0 100 * Scoria Reddish filled with silt. Core loss. Breaks in hand. 100 91 0/0/0/0 91 0/0/0/0	129.6	_							62	18/0/0/0				
96- 98- 124,0 96- 98- 100 96- 98- 98- 100 96- 98- 98- 98- 100 15/0/0/0 21/0/0/0 100 124,0 100 100 100 100 100 100 100	128.5	94—			Scoracious	$Qc = \frac{15}{12} \times \frac{2-3}{3-4} \times \frac{1}{1} = 0,6-1,3$	94—	1	55	0/0/0/0				
Vesicular Tholeiite Basalt 90- 89 21/0/0/0 98- 98- 98- 79 0/0/0/0 124.0 100 • • Scoria Reddish filled with silt. Core loss. Breaks in hand. 100	120,0	-		$\hat{\mathbf{R}}$]		15/0/0/0	'			
98- 98- 79 0/0/0/0 100 • • Scoria Reddish filled with silt. Core loss. Breaks in hand.		90-		$1 \mid$	Vesicular	Tholeiite Basalt	90-		89	21/0/0/0				
124,0 - Scoria Reddish filled with silt. Core loss. Breaks in hand. 100 91 0/0/0/0		98-				, no granica, vor jonica.	98-		-	Ļ				
124,0 100 91 0/0/0/0 100 91 0/0/0/0		-					_		79	0/0/0/0				
	124,0	100	. /	• •	Scoria	Reddish filled with silt. Core loss. Breaks in hand.	100		91	0/0/0/0				

Reference: Jarðfræði Samstaðaklifs, Snorri Pall Snorrason, SPS-80/02. Jarðfræði Sámstaðaklifs, Snorri Páll Snorrason, SPS-81/01.

S/	Alme	nna		Búrfell HEP Extension			Contractor Jarðb	oranır	Drill Niða	andi (S	5)
ex.	心 verkfræði	stofan		BF-1			Place: Sáms	staðir	Drill thic BQ	^{kness:} 36.5 m	m core
	Landsvi	rkjun		Cored Hole			Date of dr		Drawn:	<u>, , , , , , , , , , , , , , , , , , , </u>	
Coordinate	^{es:} ISN93	X: 460838	3,804 Y:40	00321,516 Elev.: 223,40 m.a.s.l.			Drawing n	5/7 1960 r.:	Approve	ed:	
Elevation	Depth	Soil			Depth	Casing	3 of 4		SPS	Perme	ability (111)
[m.a.s.l.] 123,2	[m]	profile	Sample Scoria	Description	[m]	PLT	[%]	10/30/50/100°		5	10 15 20
121,9	- 102 _ -		Vesicular	Tholeiite Basalt Gray, joints coated, the dense part is heavy, fine to small grained.	 102		85 85	39/0/0/0			
	104 	R	– Dense		104		92	62/21/0/0			
117,4 116,9	106 		_ <u>Scoria</u>		106		100 <u>-</u> 17 60 =	97/0/0/0 0/0/0/0 0/0/0/0			
	108			Tholeiite Basalt	108	-	96	38/0/0/0			
				Medium grained, flow banded, dark gray, bit brownish. Joints coated/filled with light or brownish secondary minerals. Considerably jointed.			93	37/12/0/0 42/23/0/0			
	112 			Qc = $\frac{37}{12} \times \frac{2\cdot3}{3\cdot4} \times \frac{1}{1} = 1,5-3,1$	112		90	20/0/0/0			
107,4	114 116				114 		- 91	44/36/0/0			
					_		92 _	48/0/0/0			
	118		Scoria	Reddish, vesicular, breaks between hands. Joints filled with silt. $Oc = \frac{28}{3} \times \frac{3}{3} \times \frac{1}{3} = 1.4-2.3$	118		74	28/0/0/0 27/0/0/0			
103,2	120 _	·		$QC = 12-15 \land 3-4 \land 1 = 1, +2, 5$	120		77 🗆	0/0/0/0			
				Olivine Basalt			86	22/0/0/0		0-150n	ון
	122		flow banded	Slightly porphyritic, phenochrysts plg, max 1mm. Medium grained. Joints coated to filled with clay	122		93 =	0/0/0/0			
	_ 124 _	R		minerals. Light brownish secondary minerals. Gray in color. Joint fillings up to 1mm.	- 124		89 – 78 – 86 –	25/0/0/0 36/0/0/0			
			Dense		-		84	17/0/0/0			
	126 -				126 -		88 70 -	30/0/0/0 - 33/3/0/0 12/0/0/0			
	 130			Qc = $\frac{33}{12}$ x $\frac{43}{5-4}$ x $\frac{1}{7}$ = 1,4-2,8	- 130 -		95 60 = 93 _ 92	75/0/0/0 0/0/0/0 45/0/0/0 41/0/0/0			
							218 -	93/52/0/0			
91,9	132 _		Scoria	Breaks between hands, filled with silt. $\Omega c = \frac{62}{25} \times \frac{3}{27} \times \frac{1}{2} = 3.9-5.2$	132		92	62/14/0/0			
87,9	134			Tholeiite Basalt	134		100 =	= 100/0/0/0			
			Scoracious	Fine grained, flow banded.	-		96	46/0/0/0			
	136			Qc = $\frac{37}{9-12}$ x $\frac{3}{3-4}$ x $\frac{1}{1}$ = 2,3-4,1	136		- 81	37/15/0/0 29/14/0/0			
84,9				Vom initial filled with all headling to an i			76	0/0/0/0			
82,9	140		Scoria — — — — — — —	Very jointed, filled with silf, basaltic stones up to locm, joints coated/filled with thick silf fillings in places. $Qc = \frac{14}{12} \times \frac{3}{3 \cdot 4} \times \frac{1}{1} = 0,9-1,2$	140_		20 _ 85 _	14/0/0/0 20/0/0/0			
	142 —		Sparsly		142-		94	20/0/0/0			
			vesicular	Tholeiite Basalt Dark gray, fine to medium grained. Slightly flowbanded, coated/filled joints.			92 - 88	35/0/0/0 28/0/0/0 17/0/0/0			
	 146	N		Qc = $\frac{28}{12}$ x $\frac{2-3}{3-4}$ x $\frac{1}{1}$ = 1,2-2,3	146—		40 = 87	= 0/0/0/0 34/0/0/0			
76,3	148 -	R	 Scoracious		_		58 - 76 - 25 - 52 -	0/0/0/0 14/0/0/0 0/0/0/0 12/0/0/0			
	150				150 F	Reference:	97 - Jarðfræði	59/0/0/0 Sámstaðaklifs, Sno	rri Páll S	norrason,	SPS-80/02.

8/	Alm	enna	Búrfell HEP Extension							Contractor Jarðb	^{Drill} Niðandi (S5)					
ex	Land	eðistofan	BF-1 Cored Hole						Place: Sáms Date of drl	Drawn:						
Coordinate	^{s:} ISN93	X 46083	8,804 Y: 400321,516 Elev.: 223,40 m.a.s.l.						2/6 - 8 Drawing nr	AKS Approved:						
		71. 10000								4 of 4		SPS	5			
Elevation [m.a.s.l.]	Depth [m]	Soil profile	Sample	,	Description		Dep [m	th	CasIng PLT	Core [%]	RQD % Q _c 10/30/50/100	GWT	Pe	rmeal	bility 0 1	LU) 5 20
	_			Vesicular, co	ated/filled with light	continued at colored secondary		_		97	59/0/0/0					
71,9	152 _		Bottom 71	,9	gnity nowbanded.		1	52 _		-	_					
	_							_								
	154						1	54 _								
	_							-								
	156						1	56 _								
	-							-								
	158						1	58 _								
	-							-								
	160						1	60 _								
	-							-								
	162						1	62								
	-							_								
	104							04 _								
	166							66								
	168						1	68								
	_							_								
	170						1	70 _								
	_							_								
	172						1	72 _								
	_							_								
	174 —						1	74								
	_							-								
	176						1	76 _								
	_							-								
	178 —						1	78 _								
	-							-								
	180 —						1	80 —								
	-															
	182							82								
	184							84								
	186 —						1	86 —								
								_								
	188 —						1	88 —								
	_							_								
	190—							90—								
	_							-								
	192—							92—								
								-								
	194—							94—								
	-							-								
	196—							96—								
	-							-								
	198—							98—								
	200							200								

\$7	Aln	nenna	Búrfell HEP Extension	Contractor Jarðb	Drill Drífandi (C1)								
GAZ	∕⊗ verkfr	ræðistofan	BF-02			Place: Sáms	staðir	Drill thickness: NQ 47,6 mm					
	Lar	ndsvirkjun	Cored Hole			Date of dri	lling:) - 18/10 1981	Drawn:	s				
Coordinates	^{s:} ISN93	X: 460714	4,32 Y: 400005,24 Elev.: 151,7 m.a.s.l.			Drawing n	r.:	Approv	ed:				
Elevation	Depth	Soil	Sample Description	Depth	Casing	Core	RQD % Qc	GWT	Perr	neabl	llty (L	U)	
[[11]	pronie	Questiondar	[11]		[/0]	10/30/30/100		5	10	15	20	
	2 _		Overburden	2 _									
	_	-		-									
	4 _		Peat	4 _									
	-		145 m a s.l. Present elevation of land	-									
144,8	6 _		∇	6 -									
	8 _		Top GT Glacial moraine or till	8 _									
	-			-									
	10_			10_									
	-			-	-								
	12_			12_									
	14 _			14_			N/A						
136,6	-		Btm GT		-								
	16_		Top OB Tholeiite Basalt	16_	-								
	- 18			18	-								
		$\left + - + \right $		-									
	20 –			20_									
	-												
	22_			22_									
128,4	 24		Scoria										
126.4	_	/			-								
	26 –			26 -									
	-		Tholeiite Basalt	-									
	28-			28_									
	30 –			30-									
	-			-									
	32-			32_									
	- 34			34_									
	_			-	-								
	36 -			36-									
	-			-									
	38			38 -									
	40–			40-	-								
110,7	-		Bottom 110,7		-								
	42–	-		42-									
				44_									
	-++	-		_									
	46-	-		46-									
	_	-		-									
	48–	-		48-									
	- 50		Detailed log not found. Drawn up from simplified log, see reference.	50									

\$7	Alme	nna	Búrfell HEP Ex	Contractor Jarðb	oranir ríkisins	Drill Percussion								
GAC	verktræð	istofan	BF-10				Place: Sáms	staðir	Drill thickness:					
	Landsv	virkjun	Percussion H	ole			Date of dri 30/9 -	Iling: - 13/10 1982	Drawn: AKS	3				
Coordinates	^{s:} ISN93	X: 460688	3,28 Y: 399988,09 Elev.: 148,1 m	.a.s.l.			Drawing n 1 af 1	r.:	Approve SPS	•d: S				
Elevation [m.a.s.l.]	Depth [m]	Soil profile	Sample Description		Depth [m]	CasIng PLT	Core [%]	RQD % Q _c 10/30/50/100	GWT	Permea 5	blity (LU) 5 20		
147,1	_		Overburden											
	2				2 _									
			Peat		-									
143,2	4 _		143 m.a.s.l. Present elevatio	n of land	4 -									
	6 _		Clacial moraine or	Top GT	6 _									
	-		Giacial moralle of	un										
	8 –				8 _									
	10_				10_									
	-				-									
	12_				12_									
	14			Btm GT	14_			N/A						
133,8	_	• • • •	Scoria	Тор ОВ	-									
	16_				16_									
					18_									
	-													
128,4	20 _		— — — — — — Tholeiite Basalt		20_									
126,3	22				- 22_									
	_		Bottom 126,3											
	24 —				24_									
	-				- 26									
	28 –				28-									
	-				-									
	- 30				- 30									
	32 –				32-									
	_				-									
	34 -				34_									
	36 —				36-									
	_													
	38 -				38 -									
	40—				40-									
	_													
	42—				42-									
	44-				44-									
	46—				46-									
	48-				48-									
	_													
	50		Detailed log not found. Drawn up from simplified log, see	e reference.	50	Reference	 e: Búrfe ll II .	 Biarni Biarnason.	0S-8305	9/VOD-29	 . Julv	1983.		

8/	Alm	enna	Búrfell HEP Extension	Contractor Jarðb	oranir ríkisins	Drill Dug	jandi (C2)						
GAL	∞ verkfra	eðistofan				Place: Sáms	staðir	Drill thickness: NQ 47.6 mm core					
	Land	lsvirkjun	Cored Hole			Date of dr		Drawn:					
Coordinate	^{s:} ISN93	X: 46094	⊥ 7,63 Y: 400471,32 Elev.: 246,24 m.a.s.l.			3/6 - Drawing n	<u>7/6 1983</u> r.:	Approve	D ed:				
Flowation	Dopth	0.1		Donth	Coolog	1 af 1		SPS	Bormoshillty (LLI)				
[m.a.s.].]	[m]	profile	Sample Description	[m]	PLT	[%]	10/30/50/100°	GWI	5 10 15 20				
245,4	2 _		Top SB	2	?	100	54/0/0/0						
	_		Dark grey, medium grained, micro phenocrysts	_		95 89	23/0/0/0 - 19/0/0/0 22/0/0/0						
	4 _		<0,1 mm. Heavily jointed, seems almost tresh.	4		78	0/0/0/0						
	6 _		Qc = $\frac{19}{12}$ x $\frac{1.5-4.1}{3-4}$ x $\frac{1}{1}$ = 0,6-2,1	6 _		58 - 58 - 100 - 84 -	0/0/0/0 0/0/0/0 0/0/0/0 14/0/0/0						
	8 _			8 _		92	29/0/0/0						
237,8 236,8		•. • •	Scoria Loose material, poorly cemented, vesicular, filled with silt.			58 38 _	0/0/0/0 0/0/0/0 0/0/0/0						
	10_ _		Vesicular Cube jointed Olivine basalt Medium grained, vesicular, very few	10_		95	32/0/0/0						
	12_		 plg phenocrysts up to 2 mm. Joints mostly coated with opal/silt in the dense part 	12_		75 <u>-</u> 89	0/0/0/0 0/0/0/0						
	14		Dense	14_		92	22/0/0/0 34/0/0/0		9-20m 5 LU				
	- 16-		+ $Qc = \frac{22}{12} \times \frac{1.5-4.1}{3-4} \times \frac{1}{1} = 0,7-2,4$	- 16		75 _	15/0/0/0						
	-		Scoracious Filled with silt			58	5/0/0/0						
228,3	18_			18_		100 _	75/0/0/0						
	20 -		Yellowish Hyaloclastite Medium grained, coarse groundmass, fragments around 0,5 - 1 cm in a finer mass of sandy matrix.	20_		102 23 <u>-</u>	79/35/19/0						
	22 _		Most of the volume 50/50, well cemented. Stones 3 - 10cm scattered in the mass.	22_		94	65/19/0/0						
223,2 222,5	24_7	$\overline{\overline{x}}$		24_									
	26 –		Exact location not known	\rightarrow _	3 MPa	95	87/67/40/40						
	- 28 -		77 24 4	 28		-	77/51/30/6						
	30 –		Qc = <u>//</u> 5-9 x 3-4 x 1 = 6,4-17,1	 30		94	96/76/48/0		20 - 40m 1 LU				
	32_			 32		99	95/75/60/0						
	34			34		99	89/68/22/0						
	36 –			36—		-	+						
208,3			Btm SB			95	77/55/55/0						
	-		T Top OB	-		100	0/0/0/0						
206,2	40		Bottom 206,2	40									
	- 42-			42–									
	44			 44									
	46—			- 46									
	_			_									
	48-			48									
	50			50									

\$7	Alm	ienna	Búrfell H	Contractor Jarðb	oranir ríkisins	Drill Dugandi (C2)					
642	Lan	dsvirkiun	C	BF-19 pred Hole			Place: Sáms Date of dri	staðir Illing:	Drill thick NQ Drawn:	^{kness:} 47,6 mr	n core
Coordinates		X. 40000		14.00 m o o l			26/5	2/6 1983	AKS	6 d:	
	121192	A. 46090 <i>.</i>	52 f. 400380,69 ⊏lev 2	44,32 m.a.s.i.			1 af 1		SPS	6	
Elevation [m.a.s.l.]	Depth [m]	Soil profile	ample Descriptio	on	Depth [m]	Casing PLT	Core [%]	RQD % Q _c 10/30/50/100	GWT	Permeal	ollity (LU)
243,72	2 _		Overbu -core-loss- Scoria Scoria Filled with opal, story	rden Top OB y, probably with weak matrix. Qc NA	2		60 = 15	0/0/0/0 0/0/0/0 0/0/0/0			
242,0	_ 4 _		Tholeiit Weak flowbanding, s Vesicles up to 4 mm. vesicles visible Joint	e basalt ightly vesicular, fine vesicles. Clusters of slightly coarser are coated with brownish or	4		99 –	34/0/0/0			
	_		light colored secondar filled. $Oc = \frac{50}{50}$	ry minerals, some joints are $2\frac{2.5-3}{2} \times \frac{1}{2} = 2.6-5.6$	_		92	66/38/0/0			
238,6 238,2	6_		Conglor Groundmass in upper par Very >1 cm well rounded. Grr stony medium grained, blend of	nerate - stony t fine sand - silf, with small pebbles oundmass in lower part coarse to f subangular and rounded stones	6		83 I 95	33/0/0/0 58/23/0/0 58/23/0/0	Ţ		
236,7	8 _		of various origin mostly Olivine Medium grained, grey, Vesicular phenochrysts. Vesicles	basaltic. Qc = $\frac{58}{542} \times \frac{3}{54} \times \frac{1}{5} = 3.6-6.4$ basalt plg and px micro are irregular up to 1 cm,	8		100 _	56/0/0/0 68/41/27/0			
234,8 234,1 233,7	10_	-(N) + - = = = = = = =	Some filled with silt. Joi Scoracious filled with light second Healed joint 2 cm, filled with snatstone. D cm joint filled with snatstone QC =	nts are coated, sometimes any minerals and silt, $\frac{68}{6-9} \times \frac{1.5-3}{2-4} \times \frac{1}{1} = 2.8-17$	10_		97	71/36/36/0			
233,1	 12		Reddish w. very thick s Good core recovery, br Scoria during drilling/handling	ilt/sandstone fillings, vesicular. eaks between hands. Breaks	12_		109 <u>-</u> 91	86/0/0/0 43/0/0/0 36/0/0/0			
230,6	 14		Qc =	⁴³ 9-12 x ²⁻³ / ₃₋₄ x ¹ / ₁ = 1,8-4,8	14_		88	0/0/0/0		9-20m 4 LU	
	 16-		Tholeiit Grey, flowbanded, find	e basalt e grained. Joints filled/coated.			92	50/0/0/0 71/0/0/0			
	 18		Joints moderate.	³ x ¹ - 4 C 4 O	 18		- 128	- 32/0/0/0			
225,3	_		$QC = \frac{12}{12} \times \frac{3}{3}$	T X 1- 1,0-4,2			78	50/22/0/0			
222,1	20 22 	° . D	Redbrown sandstone Conglor Light brown, groundr a few subangular rhy breaks between hands	nerate nass fine sand or silt, Jlite pebbles. Light in hand, , irregularly layered.	20		99	81/39/26/0			
218,8 218,3	24 26		$ \begin{array}{c} \text{Groundmass medium} \\ \text{basaltic pebbles/rock} \\ \text{up to 5 cm. Irregular!} \\ \hline \underline{-Stone} = - \\ \text{Qc} = \frac{58}{12} \times \frac{1.5}{3-1} \end{array} $	to coarse grained, a few fragments of various origin y layered. $\frac{3}{4} \times \frac{1}{1} = 1,8-4,8$	24 — — 26 —		- 85	57/12/0/0			
216,3	_ 28_		Reworked rhyolitic tephra Conglomerate Conglomerate Reworked thores to the solution Mostly acid tephra, lig embedded in groundma Almost white, slight la Poorly cemented, breal Groundmass sand - silt, a few	nt in hand, basalt pebbles ass. Erodes during drilling. yering with dark bands. ss between hands subangular pebbles of	28		- 98	41/0/0/0		20.40m	
215,6	 30			Andesite vesicles filled with opal/silt. d. Joints coated/filled with			68	38/0/0/0		6 LΨ	
212,9			$ \qquad \begin{array}{c} \text{opal/sīlt, '3-5mm.} \\ Qc = \frac{35}{12-15} \\ \text{Vesicles irregular up} \end{array}$	$\frac{1.5-3}{3-4} \times \frac{1}{1} = 0,9-2,9$ to 2cm, filled with opal/silt.			48 -	13/0/0/0 35/0/0/0			
210,8 210,0			Joints coated or filled				94	16/0/0/0			
	 36		Very vesicular, most Scoracious Dark grey, flowbande opal/silt, 3-5mm.	vesicles filled with opal/silt. d. Joints coated/filled with			98	20/0/0/0			
207,7	 38		Qc =	$\frac{20}{12} \times \frac{1.5-3}{3-4} \times \frac{1}{1} = 0,6-1,7$ to 2cm, filled with opal/silt.	 38		- 98	- 20/0/0/0 35/0/0/0			
205,6 204,3	 40		Scorla Core loss				8	0/0/0/0			
	42.		Bottom 204,3								
	+2				-						
	44				44						
	46— —				46—						
	48— —				48						
	50				50						

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	\$7	Aln	nenna		Búrfell HEP Extension	Contractor Jarðb	oranir ríkisins	Drill Dugandi (C2)							
Lambachaptic Core Hole Lambachaptic Core of Lambachaptic <	eve	w verkfr	æðistofan		BF-20	Place: Sáms	staðir	NQ 47,6 mm core							
Continuency (SUB3) X 400074.67 Y: 400024.67 Elev: 190.74 m.a.s.t. Description with a strap is strap is a strap is a strap is a str		Lan	ıdsvirkjun		Cored Hole			Date of drl	lling: 19/6 1983	Drawn: AKS	5				
Backer Page Code Code <thcode< th=""> Code Code <</thcode<>	Coordinate	^{s:} ISN93	X: 460674	,67 Y: 40	0024,83 Elev.: 160,74 m.a.s.l.			Drawing nr 1 af 1	.:	Approve SPS	Approved:				
$C = \frac{1}{2} \times $	Elevation [m.a.s.l.]	Depth [m]	Soil profile	Sample	Description	Depth [m]	CasIng PLT	Core [%]	RQD % Q _c 10/30/50/100	GWT	Pern 5	neabilit	y (LU)		
$\frac{1}{102}$ $\frac{1}$					Overburden (removed)	_									
$C = \frac{1}{12} \times \frac{1}{$		2 _				2 _	-								
1057 1057		-													
10.2 10.2		4 _				4 _									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		-				-									
Instrume Pet treasevel) Instrume Pet treasevel) Instrume 180 Image: Ima	153.7	о —				0-				÷					
$ \frac{150}{100} $ $ \frac{150}{100}$		8 _			Peat (removed)	8 _	-								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		-			151 m.a.s.l. Present elevation of land	-	-								
$ \begin{array}{c} $	150,7	10_			Clacial moraine or fill Ton GT	10_									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		-				-									
Let record prive how and the core broken and credit of the joints $C = \frac{13}{12} \times \frac{1}{2} 3 \times \frac{1}{2} = 1, 3 - 2, 6$ $C = \frac{13}{12} \times \frac{1}{2} 3 \times \frac{1}{2} = 1, 3 - 2, 6$ $C = \frac{13}{12} \times \frac{1}{2} 3 \times \frac{1}{2} = 1, 3 - 2, 6$ $C = \frac{13}{12} \times \frac{1}{2} 3 \times \frac{1}{2} = 1, 3 - 2, 6$ $C = \frac{13}{12} \times \frac{1}{2} 3 \times \frac{1}{2} = 1, 3 - 2, 6$ $C = \frac{13}{12} \times \frac{1}{2} 3 \times \frac{1}{2} = 0, 4 - 0, 9$ $C = \frac{13}{12} \times \frac{1}{2} 3 \times \frac{1}{2} = 0, 4 - 0, 9$ $C = \frac{13}{12} \times \frac{1}{2} 3 \times \frac{1}{2} = 0, 4 - 0, 9$ $C = \frac{13}{12} \times \frac{1}{2} 3 \times \frac{1}{2} = 0, 5 - 1, 3$ $C = \frac{13}{12} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = 0, 5 - 1, 3$ $C = \frac{13}{12} \times \frac{1}{2} \times $		12_				12_		2	0/0/0/0						
$C_{c} = \frac{13}{12} \times \frac{15^{-3}}{12} \times \frac{1}{12} \times \frac{15}{2} \times \frac{15}$		 14			Core recovery is low and the core broken and eroded at the joints	14_		-	_						
$\begin{aligned} & AC = \frac{13}{12} \times \frac{143}{2} \times \frac{1}{2} = 1, 3 \ge 2, 6 \\ & AC = \frac{13}{12} \times \frac{143}{2} \times \frac{1}{2} = 1, 3 \ge 2, 6 \\ & AC = \frac{13}{12} \times \frac{143}{2} \times \frac{1}{2} = 1, 3 \ge 2, 6 \\ & AC = \frac{10}{12} \times \frac{143}{2} \times \frac{1}{2} = 1, 3 \ge 2, 6 \\ & AC = \frac{10}{12} \times \frac{143}{2} \times \frac{1}{2} = 1, 3 \ge 2, 6 \\ & AC = \frac{10}{12} \times \frac{143}{2} \times \frac{1}{2} = 1, 3 \ge 2, 6 \\ & AC = \frac{10}{12} \times \frac{143}{2} \times \frac{1}{2} = 0, 4 \ge 0, 9 \\ & AC = \frac{10}{12} \times \frac{143}{2} \times \frac{1}{2} = 0, 4 \ge 0, 9 \\ & AC = \frac{10}{12} \times \frac{143}{2} \times \frac{1}{2} = 0, 4 \ge 0, 9 \\ & AC = \frac{10}{12} \times \frac{143}{2} \times \frac{1}{2} = 0, 5 \ge 1, 3 \\ & AC = \frac{10}{12} \times \frac{143}{2} \times \frac{1}{2} = 0, 5 \ge 1, 3 \\ & AC = \frac{10}{12} \times \frac{143}{2} \times \frac{1}{2} = 0, 5 \ge 1, 3 \\ & AC = \frac{10}{12} \times \frac{143}{2} \times \frac{1}{2} = 0, 5 \ge 1, 3 \\ & AC = \frac{10}{12} \times \frac{143}{2} \times \frac{1}{2} = 0, 5 \ge 1, 3 \\ & AC = \frac{10}{12} \times \frac{143}{2} \times \frac{1}{2} = 0, 5 \ge 1, 3 \\ & AC = \frac{10}{12} \times \frac{143}{2} \times \frac{1}{2} = 0, 5 \ge 1, 3 \\ & AC = \frac{10}{12} \times \frac{143}{2} \times \frac{1}{2} = 0, 5 \ge 1, 3 \\ & AC = \frac{10}{12} \times \frac{143}{2} \times \frac{1}{2} = 0, 5 \ge 1, 3 \\ & AC = \frac{10}{12} \times \frac{143}{2} \times \frac{1}{2} = 0, 5 \ge 1, 3 \\ & AC = \frac{10}{12} \times \frac{143}{2} \times \frac{1}{2} = 0, 5 \ge 1, 3 \\ & AC = \frac{10}{12} \times \frac{143}{2} \times \frac{1}{2} = 0, 5 \ge 1, 3 \\ & AC = \frac{10}{12} \times \frac{143}{2} \times \frac{1}{2} = 0, 5 \ge 1, 3 \\ & AC = \frac{10}{12} \times \frac{14}{2} \times \frac{1}{2} = 0, 5 \ge 1, 3 \\ & AC = \frac{10}{12} \times \frac{14}{2} \times \frac{1}{2} = 0, 5 \ge 0, 9 \\ & AC = \frac{10}{12} \times \frac{14}{2} \times \frac{1}{2} = 0, 5 \ge 0, 9 \\ & AC = \frac{10}{12} \times \frac{14}{2} \times \frac{1}{2} = 0, 5 \ge 0, 9 \\ & AC = \frac{10}{12} \times \frac{14}{2} \times \frac{1}{2} = 0, 5 \ge 0, 9 \\ & AC = \frac{10}{12} \times \frac{14}{2} \times \frac{1}{2} = 0, 5 \ge 0, 9 \\ & AC = \frac{10}{12} \times \frac{14}{2} \times \frac{1}{2} = 0, 5 \ge 0, 9 \\ & AC = \frac{10}{12} \times \frac{14}{2} \times \frac{1}{2} = 0, 5 \ge 0, 9 \\ & AC = \frac{10}{10} \times \frac{14}{10} \times \frac{14}{10}$		_				-	-	35	4/0/0/0						
Part of core reasonably well constitute busined Bun GT Part of core reasonably well constitute busined Bun GT Top OB 20 20 20 20 20 20 20 20 20 20		16—			$Qc = \frac{13}{15} \times \frac{1.5 \cdot 3}{1} \times \frac{1}{1} = 1,3-2,6$	16_	-		- 13/0/0/0						
Part of core reasonably well cenanted but joined Brow Brow Brow Brow Brow Brow Brow Brow		-					-	42	0/0/0/0						
100920SoriaRef of the state structure in the state structure in the structure in		18_			Part of core reasonably well cemented but jointed	18_	-	-							
ScoriaScoriaFunction </td <td>140,9</td> <td>20_</td> <td></td> <td></td> <td>Btm GT</td> <td></td> <td></td> <td>92</td> <td>- 0/0/0/0</td> <td></td> <td></td> <td></td> <td></td>	140,9	20_			Btm GT			92	- 0/0/0/0						
Poorly concented, vesicular, breaks between bands, Filled with site Story sectors in between up to Stem $C = \frac{10}{1520} \times \frac{54}{54} \times \frac{1}{4} = 0.4 - 0.9$ $C = \frac{10}{1520} \times \frac{54}{54} \times \frac{1}{4} = 0.4 - 0.9$ $C = \frac{10}{1520} \times \frac{54}{54} \times \frac{1}{4} = 0.4 - 0.9$ $C = \frac{10}{1520} \times \frac{54}{54} \times \frac{1}{4} = 0.4 - 0.9$ $C = \frac{10}{1520} \times \frac{54}{54} \times \frac{1}{4} = 0.4 - 0.9$ $C = \frac{10}{1520} \times \frac{54}{54} \times \frac{1}{4} = 0.4 - 0.9$ $C = \frac{10}{1520} \times \frac{54}{54} \times \frac{1}{4} = 0.5 - 1.3$ $C = \frac{10}{1520} \times \frac{54}{54} \times \frac{1}{4} = 0.5 - 1.3$ $C = \frac{10}{1520} \times \frac{54}{54} \times \frac{1}{4} = 0.5 - 1.3$ $C = \frac{10}{1520} \times \frac{54}{54} \times \frac{1}{4} = 0.5 - 1.3$ $C = \frac{10}{1520} \times \frac{54}{54} \times \frac{1}{4} = 0.5 - 1.3$ $C = \frac{10}{1520} \times \frac{54}{54} \times \frac{1}{4} = 0.5 - 1.3$ $C = \frac{10}{1520} \times \frac{54}{54} \times \frac{1}{4} = 0.5 - 1.3$ $C = \frac{10}{1520} \times \frac{54}{54} \times \frac{1}{4} = 0.5 - 1.3$ $C = \frac{10}{1520} \times \frac{54}{54} \times \frac{1}{4} = 0.5 - 1.3$ $C = \frac{10}{1520} \times \frac{54}{54} \times \frac{1}{4} = 0.5 - 1.3$ $C = \frac{10}{1520} \times \frac{54}{54} \times \frac{1}{4} = 0.5 - 1.3$ $C = \frac{10}{1520} \times \frac{54}{54} \times \frac{1}{4} = 0.5 - 0.9$ $C = \frac{10}{1520} \times \frac{54}{54} \times \frac{1}{4} = 0.5 - 0.9$ $C = \frac{10}{1520} \times \frac{54}{54} \times \frac{1}{4} = 0.5 - 0.9$ $C = \frac{10}{1520} \times \frac{54}{54} \times \frac{1}{4} = 0.5 - 0.9$ $C = \frac{10}{1520} \times \frac{54}{54} \times \frac{1}{4} = 0.5 - 0.9$ $C = \frac{10}{1520} \times \frac{54}{54} \times \frac{1}{4} = 0.5 - 0.9$ $C = \frac{10}{1520} \times \frac{54}{54} \times \frac{1}{4} = 0.5 - 0.9$ $C = \frac{10}{1520} \times \frac{54}{54} \times \frac{1}{4} = 0.5 - 0.9$ $C = \frac{10}{1520} \times \frac{54}{54} \times \frac{1}{4} = 0.5 - 0.9$ $C = \frac{10}{1520} \times \frac{54}{54} \times \frac{1}{4} = 0.5 - 0.9$ $C = \frac{10}{1520} \times \frac{54}{54} \times \frac{1}{4} = 0.5 - 0.9$ $C = \frac{10}{1520} \times \frac{54}{54} \times \frac{1}{4} = 0.5 - 0.9$ $C = \frac{10}{1520} \times \frac{54}{54} \times \frac{1}{4} = 0.5 - 0.9$ $C = \frac{10}{1520} \times \frac{54}{54} \times \frac{1}{4} = 0.5 - 0.9$ $C = \frac{10}{1520} \times \frac{54}{54} \times \frac{1}{5} = 0.5 - 0.9$ $C = \frac{10}{1520} \times \frac{54}{54} \times \frac{1}{5} = 0.5 - 0.9$ $C = \frac{10}{1520} \times \frac{54}{54} \times \frac{1}{5} = 0.5 - 0.9$ $C = \frac{10}{1520} \times \frac{54}{54} \times \frac{1}{5} = 0.5 - 0.9$ $C = \frac{10}{1520} \times \frac{10}{54} \times \frac{10}{54} = 0.5 - $			• • • • • •		Scoria - Stony		-	67	62/0/0/0						
$Cc = \frac{10}{15.6} \times \frac{14}{5} \times \frac{12}{5} \times \frac$		22_			Poorly cemented, vesicular, breaks between hands. Filled with silt. Stony sectors in between up to 50cm	22_	-	39 -	3/0/0/0						
$C = \frac{1520}{1226} \times \frac{12}{34} \times \frac{1}{3} = 0.5 - 1.3$ $C = \frac{15}{12} \times \frac{12}{34} \times \frac{1}{3} = 0.5 - 1.3$ $C = \frac{16}{1226} \times \frac{12}{34} \times \frac{1}{3} = 0.5 - 1.3$ $C = \frac{16}{1226} \times \frac{12}{34} \times \frac{1}{3} = 0.5 - 1.3$ $C = \frac{16}{1226} \times \frac{12}{34} \times \frac{1}{3} = 0.5 - 1.3$ $C = \frac{16}{1226} \times \frac{12}{34} \times \frac{1}{3} = 0.5 - 1.3$ $C = \frac{16}{1226} \times \frac{12}{34} \times \frac{1}{3} = 0.5 - 1.3$ $C = \frac{16}{1226} \times \frac{12}{34} \times \frac{1}{3} = 0.5 - 1.3$ $C = \frac{16}{1226} \times \frac{12}{34} \times \frac{1}{3} = 0.5 - 0.9$ $C = \frac{16}{1226} \times \frac{12}{34} \times \frac{1}{3} = 0.5 - 0.9$ $C = \frac{16}{1226} \times \frac{12}{34} \times \frac{1}{3} = 0.5 - 0.9$ $C = \frac{16}{1226} \times \frac{12}{34} \times \frac{1}{3} = 0.5 - 0.9$ $C = \frac{16}{1226} \times \frac{12}{34} \times \frac{1}{3} = 0.5 - 0.9$ $C = \frac{16}{1226} \times \frac{12}{34} \times \frac{1}{3} = 0.5 - 0.9$ $C = \frac{16}{1226} \times \frac{12}{34} \times \frac{1}{3} = 0.5 - 0.9$ $C = \frac{16}{1226} \times \frac{12}{34} \times \frac{1}{3} = 0.5 - 0.9$ $C = \frac{16}{1226} \times \frac{12}{34} \times \frac{1}{3} = 0.5 - 0.9$ $C = \frac{16}{122} \times \frac{12}{34} \times \frac{1}{3} = 0.5 - 0.9$ $C = \frac{16}{122} \times \frac{12}{34} \times \frac{1}{3} = 0.5 - 0.9$ $C = \frac{16}{122} \times \frac{12}{34} \times \frac{1}{3} = 0.5 - 0.9$ $C = \frac{16}{122} \times \frac{12}{34} \times \frac{1}{3} = 0.5 - 0.9$ $C = \frac{16}{122} \times \frac{12}{34} \times \frac{1}{3} = 0.5 - 0.9$ $C = \frac{16}{122} \times \frac{12}{34} \times \frac{1}{3} = 0.5 - 0.9$ $C = \frac{16}{122} \times \frac{12}{34} \times \frac{1}{3} = 0.5 - 0.9$ $C = \frac{16}{122} \times \frac{12}{34} \times \frac{1}{3} = 0.5 - 0.9$ $C = \frac{16}{122} \times \frac{12}{34} \times \frac{1}{3} = 0.5 - 0.9$ $C = \frac{16}{12} \times \frac{12}{34} \times \frac{1}{3} = 0.5 - 0.9$ $C = \frac{16}{12} \times \frac{12}{34} \times \frac{1}{3} = 0.5 - 0.9$ $C = \frac{16}{12} \times \frac{12}{34} \times \frac{1}{3} = 0.5 - 0.9$ $C = \frac{16}{12} \times \frac{12}{34} \times \frac{1}{3} = 0.5 - 0.9$ $C = \frac{16}{12} \times \frac{12}{34} \times \frac{1}{3} = 0.5 - 0.9$ $C = \frac{16}{12} \times \frac{12}{34} \times \frac{1}{3} = 0.5 - 0.9$ $C = \frac{16}{12} \times \frac{12}{34} \times \frac{1}{3} = 0.5 - 0.9$ $C = \frac{16}{12} \times \frac{12}{34} \times \frac{1}{3} = 0.5 - 0.9$ $C = \frac{16}{12} \times \frac{12}{34} \times \frac{1}{3} = 0.5 - 0.9$ $C = \frac{16}{12} \times \frac{12}{34} \times \frac{1}{3} = 0.5 - 0.9$ $C = \frac{16}{12} \times \frac{12}{34} \times \frac{1}{3} = 0.5 - 0.9$ $C = \frac{16}{12} \times \frac{12}{34} \times \frac{1}{3} = 0.5 - 0.9$ $C = \frac{16}{12} \times \frac{12}{34} \times \frac{1}{3} = 0.5 - 0.9$ $C = \frac{16}{12} \times \frac{12}{34} \times \frac{1}{3} = 0.5 - 0.9$ C		-			$\Omega_{C} = \frac{10}{100} \times \frac{3-4}{2} \times \frac{1}{2} = 0.4 - 0.9$		-	55	0/0/0/0						
13.5 13.6 13.6 13.6 13.8 14.8 15.8		24 _	····/		$Q_0 = 15-20 \times 3.4 \times 1 = 0, = 0, 0$	24-	-	15 <u></u>	0/0/0/0		19-: 5 Li	30m U			
Image: DenseTholeite or intermediate basaltImage: DenseTholeite or intermediate basaltImage: DenseBoth and a star grow, a few plip phenocrysts into intermediate basaltBoth and a star grow, a few plip phenocrysts into intermediate basaltBoth and a star grow, a few plip phenocrysts into intermediate basaltBoth and a star grow, a few plip phenocrysts into intermediate basaltBoth and a star grow, a few plip phenocrysts intermediate basaltBoth and a star grow, a few plip phenocrysts intermediate basaltBoth and a star grow, a few plip phenocrysts intermediate basaltBoth and a star grow, a few plip phenocrysts intermediate basaltBoth and a star grow, a few plip phenocrysts intermediate basaltBoth and a star grow, a few plip phenocrysts intermediate basaltBoth and a star grow, a few plip phenocrysts intermediate basaltBoth and a star grow, a few plip phenocrysts intermediate basaltBoth and a star grow, a few plip phenocrysts intermediate basaltBoth and a star grow, a few plip phenocrysts intermediate basaltBoth and a star grow, a few plip phenocrysts intermediate basaltBoth and a star grow, a few plip phenocrysts intermediate basaltBoth and a star grow, a few plip phenocrysts intermediate basaltBoth and a star grow, a few plip phenocrysts intermediate basaltBoth and a star grow, a few plip phenocrysts intermediate basaltBoth and a few plip phenocrysts intermediate basaltBoth and a few plip phenocrysts intermediate basalt intermediate basaltBoth and a few plip phenocrysts intermediate basalt intermediate basaltBoth and a few plip phenocrysts intermediate basalt intermediate basalt intermediate basalt intermediate basalt intermediate basalt interme	135,6	- 26 -				26 -		69	0/0/0/0						
Fine grained, dark grey, a few plp phonocysis up to Srom. Tectoric piints visible, Joints coated with light colored silt and greenish and dark an interals. $Q_{c} = \frac{16}{12.15} \times \frac{1.53}{3} \times \frac{1}{4} = 0.5 - 1.3$ $Q_{c} = \frac{16}{12.15} \times \frac{1.53}{3} \times \frac{1}{4} = 0.5 - 1.3$ $Q_{c} = \frac{16}{12.15} \times \frac{1.53}{3} \times \frac{1}{4} = 0.5 - 1.3$ $Q_{c} = \frac{16}{12.15} \times \frac{1.53}{3} \times \frac{1}{4} = 0.5 - 1.3$ $Q_{c} = \frac{16}{12.15} \times \frac{1.53}{3} \times \frac{1}{4} = 0.5 - 1.3$ $Q_{c} = \frac{16}{12.15} \times \frac{1.53}{3} \times \frac{1}{4} = 0.5 - 1.3$ $Q_{c} = \frac{16}{12.15} \times \frac{1.53}{3} \times \frac{1}{4} = 0.5 - 1.3$ $Q_{c} = \frac{16}{12.15} \times \frac{1.53}{3} \times \frac{1}{4} = 0.5 - 1.3$ $Q_{c} = \frac{16}{12.15} \times \frac{1.53}{3} \times \frac{1}{4} = 0.5 - 1.3$ $Q_{c} = \frac{16}{12.15} \times \frac{1.53}{3} \times \frac{1}{4} = 0.5 - 1.3$ $Q_{c} = \frac{16}{12.15} \times \frac{1.53}{3} \times \frac{1}{4} = 0.5 - 1.3$ $Q_{c} = \frac{16}{12.15} \times \frac{1.53}{3} \times \frac{1}{4} = 0.5 - 0.9$ $Q_{c} = \frac{16}{12.15} \times \frac{15}{3} \times \frac{1}{4} = 0.5 - 0.9$ $Q_{c} = \frac{16}{12.15} \times \frac{15}{3} \times \frac{1}{4} = 0.5 - 0.9$ $Q_{c} = \frac{16}{12.15} \times \frac{15}{3} \times \frac{1}{4} = 0.5 - 0.9$ $Q_{c} = \frac{16}{12.15} \times \frac{15}{3} \times \frac{1}{4} = 0.5 - 0.9$ $Q_{c} = \frac{16}{12.15} \times \frac{15}{3} \times \frac{1}{4} = 0.5 - 0.9$ $Q_{c} = \frac{16}{12.15} \times \frac{15}{3} \times \frac{1}{4} = 0.5 - 0.9$ $Q_{c} = \frac{16}{12.15} \times \frac{15}{3} \times \frac{1}{4} = 0.5 - 0.9$ $Q_{c} = \frac{16}{12.15} \times \frac{15}{3} \times \frac{1}{4} = 0.5 - 0.9$ $Q_{c} = \frac{16}{12.15} \times \frac{15}{3} \times \frac{1}{4} = 0.5 - 0.9$ $Q_{c} = \frac{16}{12.15} \times \frac{15}{3} \times \frac{1}{4} = 0.5 - 0.9$ $Q_{c} = \frac{16}{12.15} \times \frac{15}{3} \times \frac{1}{4} = 0.5 - 0.9$ $Q_{c} = \frac{16}{12.15} \times \frac{15}{3} \times \frac{1}{4} = 0.5 - 0.9$ $Q_{c} = \frac{16}{12.15} \times \frac{15}{3} \times \frac{1}{4} = 0.5 - 0.9$ $Q_{c} = \frac{16}{12.15} \times \frac{15}{3} \times \frac{1}{4} = 0.5 - 0.9$ $Q_{c} = \frac{16}{12.15} \times \frac{15}{3} \times \frac{1}{4} = 0.5 - 0.9$ $Q_{c} = \frac{16}{12.15} \times \frac{16}{3} \times \frac{1}{4} \times \frac{1}{4} = 0.5 - 0.9$ $Q_{c} = \frac{16}{12.15} \times \frac{15}{3} \times \frac{1}{4} \times \frac{1}{4} = 0.5 - 0.9$ $Q_{c} = \frac{16}{12.15} \times \frac{15}{3} \times \frac{1}{4} \times \frac{1}{4} = 0.5 - 0.9$ $Q_{c} = \frac{16}{12.15} \times \frac{15}{3} \times \frac{1}{4} \times \frac{1}{4} = 0.5 - 0.9$ $Q_{c} = \frac{16}{12.15} \times \frac{16}{3} \times \frac{1}{4} \times \frac{1}{4} = 0.5 - 0.9$ $Q_{c} = \frac{16}{12.1$				Dense	Tholeiite or intermediate basalt		-	$\begin{vmatrix} 80 \\ 42 \\ 50^{25} = 1 \end{vmatrix}$	20/0/0/0 17/0/0/0						
with light colored silt and greenish and dark minerals. $Qc = \frac{16}{12 \cdot 15} \times \frac{15 \cdot 3}{3} \times \frac{1}{2} = 0.5 \cdot 1.3$ $Qc = \frac{16}{12 \cdot 15} \times \frac{15 \cdot 3}{3} \times \frac{1}{2} = 0.5 \cdot 1.3$ $Qc = \frac{16}{12 \cdot 15} \times \frac{15 \cdot 3}{3} \times \frac{1}{2} = 0.5 \cdot 1.3$ $Qc = \frac{16}{12 \cdot 15} \times \frac{15 \cdot 3}{3} \times \frac{1}{2} = 0.5 \cdot 1.3$ $Qc = \frac{16}{12 \cdot 15} \times \frac{15 \cdot 3}{3} \times \frac{1}{2} = 0.5 \cdot 1.3$ $Qc = \frac{16}{12 \cdot 15} \times \frac{15 \cdot 3}{3} \times \frac{1}{2} = 0.5 \cdot 1.3$ $Qc = \frac{16}{12 \cdot 15} \times \frac{15 \cdot 3}{3} \times \frac{1}{2} = 0.5 \cdot 1.3$ $Qc = \frac{16}{12 \cdot 15} \times \frac{15 \cdot 3}{3} \times \frac{1}{2} = 0.5 \cdot 1.3$ $Qc = \frac{16}{12 \cdot 15} \times \frac{15 \cdot 3}{3} \times \frac{1}{2} = 0.5 \cdot 1.3$ $Qc = \frac{16}{12 \cdot 15} \times \frac{15 \cdot 3}{3} \times \frac{1}{2} = 0.5 \cdot 1.3$ $Qc = \frac{16}{12 \cdot 15} \times \frac{12 \cdot 15}{3} \times \frac{1}{2} = 0.5 \cdot 1.3$ $Qc = \frac{16}{12 \cdot 15} \times \frac{1}{3} \times \frac{1}{2} = 0.5 \cdot 1.3$ $Qc = \frac{16}{12 \cdot 15} \times \frac{1}{3} \times \frac{1}{2} = 0.5 \cdot 1.3$ $Qc = \frac{16}{12 \cdot 15} \times \frac{1}{3} \times \frac{1}{2} = 0.5 \cdot 1.3$ $Qc = \frac{16}{15} \times \frac{1}{3} \times \frac{1}{3} = 0.5 \cdot 1.3$ $Qc = \frac{16}{15} \times \frac{1}{3} \times \frac{1}{3} = 0.5 \cdot 1.3$ $Qc = \frac{16}{15} \times \frac{1}{3} \times \frac{1}{3} = 0.5 \cdot 1.3$ $Qc = \frac{16}{15} \times \frac{1}{3} \times \frac{1}{3} = 0.5 \cdot 1.3$ $Qc = \frac{16}{15} \times \frac{1}{3} \times \frac{1}{3} = 0.5 \cdot 0.9$ $Q0000$ $Qc = \frac{1}{13} \times \frac{1}{3} \times \frac{1}{2} = 0.5 \cdot 1.3$ $Qc = \frac{1}{13} \times \frac{1}{3} \times \frac{1}{2}$		28 –			Fine grained, dark grey, a few plg phenocrysts up to 2mm. Tectonic joints visible, Joints coated	28-	-	⁵⁰ ₇₅ ²⁵ =	0/0/0/0 0/0/0/0 19/0/0/0						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-			with light colored silt and greenish and dark minerals.		-	80 - 68 -	0/0/0/0						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		30 —				30 -	-	92 90 88	0/0/0/0 60/0/0/0						
$Qc = \frac{16}{12.15} \times \frac{15.3}{3} \times \frac{1}{4} = 0, 5-1, 3$ $Qc = \frac{16}{12.15} \times \frac{15.3}{3} \times \frac{1}{4} = 0, 5-1, 3$ $Qc = \frac{16}{12.15} \times \frac{15.3}{3} \times \frac{1}{4} = 0, 5-1, 3$ $Qc = \frac{16}{12.15} \times \frac{15.3}{34} \times \frac{1}{4} = 0, 5-1, 3$ $Qc = \frac{16}{12.15} \times \frac{15.3}{34} \times \frac{1}{4} = 0, 5-1, 3$ $Qc = \frac{16}{12.15} \times \frac{15.3}{34} \times \frac{1}{4} = 0, 5-1, 3$ $Qc = \frac{16}{12.25} \times \frac{15.3}{34} \times \frac{1}{4} = 0, 5-1, 3$ $Qc = \frac{16}{12.25} \times \frac{15.3}{34} \times \frac{1}{4} = 0, 5-1, 3$ $Qc = \frac{16}{12.25} \times \frac{15.3}{34} \times \frac{1}{4} = 0, 5-1, 3$ $Qc = \frac{16}{12.25} \times \frac{15.3}{34} \times \frac{1}{4} = 0, 5-1, 3$ $Qc = \frac{16}{12.25} \times \frac{15.3}{34} \times \frac{1}{4} = 0, 5-1, 3$ $Qc = \frac{16}{12.25} \times \frac{15.3}{34} \times \frac{1}{4} = 0, 5-1, 3$ $Qc = \frac{16}{12.25} \times \frac{15.3}{34} \times \frac{1}{4} = 0, 5-1, 3$ $Qc = \frac{16}{12.25} \times \frac{15.3}{34} \times \frac{1}{4} = 0, 5-1, 3$ $Qc = \frac{16}{12.25} \times \frac{15.4}{34} \times \frac{1}{4} = 0, 5-1, 3$ $Qc = \frac{16}{12.25} \times \frac{15.4}{34} \times \frac{1}{4} = 0, 5-1, 3$ $Qc = \frac{16}{12.25} \times \frac{12}{34} \times \frac{1}{4} = 0, 5-1, 3$ $Qc = \frac{16}{12.25} \times \frac{12}{34} \times \frac{1}{4} = 0, 5-1, 3$ $Qc = \frac{16}{12.25} \times \frac{12}{34} \times \frac{1}{4} = 0, 5-1, 3$ $Qc = \frac{16}{12.25} \times \frac{12}{34} \times \frac{1}{4} = 0, 5-1, 3$ $Qc = \frac{16}{12.25} \times \frac{12}{34} \times \frac{1}{4} = 0, 5-1, 3$ $Qc = \frac{16}{12.25} \times \frac{12}{34} \times \frac{1}{4} = 0, 5-1, 3$ $Qc = \frac{16}{12.25} \times \frac{12}{34} \times \frac{1}{4} = 0, 5-1, 3$ $Qc = \frac{16}{12.25} \times \frac{12}{34} \times \frac{1}{4} = 0, 5-1, 3$ $Qc = \frac{16}{12.25} \times \frac{12}{34} \times \frac{1}{4} = 0, 5-1, 3$ $Qc = \frac{16}{12.25} \times \frac{12}{34} \times \frac{1}{4} = 0, 5-1, 3$ $Qc = \frac{16}{12.25} \times \frac{12}{34} \times \frac{1}{4} = 0, 5-1, 3$ $Qc = \frac{16}{12.25} \times \frac{12}{34} \times \frac{1}{4} = 0, 5-1, 3$ $Qc = \frac{16}{12.25} \times \frac{12}{34} \times \frac{1}{4} = 0, 5-1, 3$ $Qc = \frac{16}{12.25} \times \frac{12}{34} \times \frac{1}{4} = 0, 5-1, 3$ $Qc = \frac{16}{12.25} \times \frac{12}{34} \times \frac{1}{4} = 0, 5-1, 3$ $Qc = \frac{16}{12.25} \times \frac{12}{34} \times \frac{1}{4} = 0, 5-1, 3$ $Qc = \frac{16}{12.25} \times \frac{12}{34} \times \frac{1}{4} = 0, 5-1, 3$ $Qc = \frac{16}{12.25} \times \frac{12}{34} \times \frac{1}{4} = 0, 5-1, 3$ $Qc = \frac{16}{12.25} \times \frac{12}{34} \times \frac{1}{4} = 0, 5-1, 0$ $Qc = \frac{16}{12.25} \times \frac{12}{34} \times \frac{1}{4} = 0, 5-1, 0$ $Qc = \frac{16}{12.25} \times \frac{12}{34} \times \frac{1}{4} = 0, 5-1, 0$ $Qc = \frac{16}{12.25}$		30				32		64 _ 94	42/0/0/0 39/0/0/0						
124.5 $34 - 34 - 34 - 34 - 34 - 34 - 34 - 34 -$		- 52			$Qc = \frac{16}{12 \cdot 15} \times \frac{1.5 \cdot 3}{3} \times \frac{1}{1} = 0.5 \cdot 1.3$	- 52		71 -	- 0/0/0/0 - 1 6/0/0 /0						
124.536ScoriaPoorly cemented, breaks between hands, vesicular, a few stones, very jointed. Filled with silt. Joints filled with silt.363636500000 000000 5535.40m 1000000 100012.60DenseTholeite basalt filled with silt.363636363612.640RDenseTholeite basalt filled with silt.363636363612.640RDenseTholeite basalt filled with silt.363636363612.640RDenseTholeite basalt filled with silt.363636363612.640RDenseTholeite basalt filled with silt.425317/00/040,50m12.846RDenseTholeite basalt filled with silt.469526/00/040,50m12.846RDenseTholeite basalt filled with silt.469526/00/040,50m12.848GDenseTholeite basalt filled with silt.469526/00/022/00/012.8ScoriaScoriaPoorly cemented, breaks between hands, vesicul		34				34-	-	96	20/0/0/0						
36Scoria a few stones, very jointed. breaks between hands, vesicular, a few stones, very jointed. Filled with silt. Joints3600/0/0/0 5610/0/0/0 563636/0/0/03535-40m122.638DenseThe grained, dense, slightly flow bands, a clored clay minerals 0, 1-0.5mm. a few stones, very jointed. Filled with silt.363636010/0/0/03512/0/0/03512/0/0/035400/0/0/03510/0/0/03512/0/0/03512/0/0/03510/0/0/03512/0/0/03510/0/0/01000/0/0/00/0/0/01000/0/0/01000/0/0/01000/0/0/01000/0/0/01000/0/0/01000/0/0/01000/0/0/01000/0/0/01000/0/0/01000/0/0/01000/0/0/01000/0/0/01000/0/0/01000/0/0/01000/0/0/01000/0/0/01000/0/0/01000/0/0/0100 <td>124,5</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>88 -</td> <td>50/0/0/0</td> <td></td> <td></td> <td></td> <td></td>	124,5	-					-	88 -	50/0/0/0						
122.638Image: Stonyfilled with site y		36 —		Scoria	Poorly cemented, breaks between hands, vesicular, a few stones, very jointed. Filled with silt. Joints	36-	-	56							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		-		Stony	filled with silt. Qc = $\frac{10}{15.20} \times \frac{3}{3.4} \times \frac{1}{4} = 0,4-0,7$	-	-	55			35-4	40m			
120.6 1	122,6	- 30		Dense	Tholeiite basalt Fine grained, dense, slightly flow banded, joints along flowbands, a few centered weiseles. Joints with filled to resemble			100 = 100 = 50	- 0/0/0/0 - 0/0/0/0		131	_0			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	120,6	40—	R		colored clay minerals 0,1 - 0,5mm. Qc = $\frac{15}{12} \times \frac{15-3}{3-4} \times \frac{1}{2} = 0,5-1,3$	40-	-	100 _	3%%%% 15/0/0/0 45/0/0/0						
Scoria i roory contented, pointed. Filled with silt. 42 - 44 - 42 - 44 - 42 - 44 - 42 - 44 - 42 - 44 - 42 - 44 -		-	1	<u> </u>	Poorly cemented breaks between hands vesicular		-	53	17/0/0/0						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		42–		Scoria	a few stones, very jointed. Filled with silt.	42-	-	-	_ 8/0/0/0						
115,8 46 46 46 46 46 46 46 46		-			$Qc = \frac{10}{15} \times \frac{3.4}{3.4} \times \frac{1}{1} = 0,5-0,9$	-	-	9	0/0/0/0						
46 B DenseTholeiite basalt Fine grained, dense, slightly flow banded, joints along flow bands, a few scattered vesicles. Joints silt filled with light or greenish colored clay minerals $0,1 - 0,5mm$. $Qc = \frac{21}{22} \times \frac{15-3}{3-4} \times \frac{1}{4} = 0,7-1,8$ 46 95 $26/0/0/0$ $22/0/0/0$ 80 7 Lu $112,8$ 48 95 $26/0/0/0$ $22/0/0/0$ $22/0/0/0$ 48 $0,1 - 0,5mm$. $Qc = \frac{21}{22} \times \frac{15-3}{3-4} \times \frac{1}{4} = 0,7-1,8$ 48 48 48 $00/0/0/0$ $00/0/0$ $00/0/0$ $00/0/0$ $110,7$ 50 000 $00/0/0$ $110,7$ 50 $000/0/0$ $00/0/0$	115,8	44-				44-	1	-	_		40-	50m			
$\begin{bmatrix} 112.8 \\ 48 \\ 48 \\ 110.7 \end{bmatrix}$ $\begin{bmatrix} along flowbands, a few scattered vesicles. Joints silt filled with light or greenish colored clay minerals O_1 = 0.5 mm. O_C = \frac{22}{12} \times \frac{15-3}{3-4} \times \frac{1}{3} = 0.7-1.8 \begin{bmatrix} 0 \\ 100 \\ 100 \\ 350/0/0 \\ 62 \\ 110/0/0 \\ 67 \\ 0/0/0/0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$		46-	R	Dense	Tholeiite basalt Fine grained, dense, slightly flow banded, joints	46-	-	95	26/0/0/0			1			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		-			along flowbands, a few scattered vesicles. Joints silt filled with light or greenish colored clay mineral 0.1 - 0.5mm 0. 22 - 15-3 - 1 - 0.7 + 0.	.s _	-	80 -	22/0/0/0 0/0/0/0						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	112,8	48—	1	6 ai	Poorly cemented, breaks between hands, vesicular,	48-	-	100 <u>-</u> 62	35/0/0/0 19/0/0/0						
	110.7		• • • • • •	Scoria	a new stones, very jointed. Filled with silt. $Qc = \frac{11}{15} \times \frac{3-4}{3-4} \times \frac{1}{1} = 0,6-1,0$	50	-	67	11/0/0/0 0/0/0/0						

Reference: Búrfell II, Bjarni Bjarnason, OS-83059/VOD-29, July 1983.

S/	Alm	ienna		Contractor: Jarðb	oranir ríkisins	Drill Dugandi (C2)					
die	AS Verktr	ædistofan		Place: Sáms	staðir	Drill thic NQ	^{kness:} 47,6 mm cc	ore			
	Lan	dsvirkjun		Cored Hole			Date of drll 20/6 -	ling: 2/7 1983	Drawn: AKS	S/ÁÓT	
Coordinates	^{s:} ISN93	X: 460683	3,71 Y: 399	989,942 Elev.: 148,90 m.a.s.l.			Drawing nr	:	Approve	d:	
Elevation	Depth	Soil	Sample	Description	Depth	CasIng PLT	Core	RQD % Q _c	GWT	Permeability ((LU)
[11.4.5.1.]	[11]	pronie		Overburden	[]		[/0]	10/00/00/100	↓ ↓ ↓	5 10 1	15 20
146,9	2			Overburden	2_						
	_			Peat 145 m.a.s.l. Present elevation of land	_						
	4 _				4 _						
	_				_						
	6 _				6 _	-					
142,0	_			Glacial moraine Top GT	_		40	0/0/0/0			
	8 -			Pebbles upp to 6-7cm, fine grained moraine. Groundmass silt or fine sand. Pebbles few, from	8 -		00	12/0/0/0			
139,2	10_		<u>Layered</u>	0,5-7cm, little layering. Considerably jointed.	10_		99	9/0/0/0			
138,0	_		Core loss	with silt. $Q_{C} = \frac{10}{4-6} \times \frac{1.5-3}{2-3} \times \frac{1}{1} = 0.8-3.8$	_		73	6/0/0/0			
137,0	12_		Scorio	Poorly cemented breaks between hands	12_		-	-		9,5-16m	
135,8				Vesicular, vesicles filled/coated with opal and	-		88 100 35	54/25/0/0 = 0/0/0/0 0/0/0/0			
	14			probably silt. $Qc = \frac{54}{15} \times \frac{3}{2-3} \times \frac{1}{1} = 3,6-5,4$	14_		43 – 78 –	0/0/0/0 0/0/0/0			
	-				-		42 - 10 -	0/0/0/0			
	10			Tholeiite basalt	10-			= 0/0/0/0 = 0/0/0/0			
	18_			Dark gray, bit brownish, fine grained, heavy in hand,	18_		64 -	– 0/0/0/0 – 7/0/0/0			
	_			0,5-1mm. Joints coated with silt and opal.	_		56 _	22/0/0/0 22/0/0/0			
	20 _				20_		63 - 60	_ 25/0/0/0 _ 0/0/0/0			
	_			10 15 2 1	_			8/8/8/8			
	22 _			Qc = ⅓ x 133 x 1 = 0,3-0,7	22_		29 80 -	0/0/0/0 25/0/0/0			
125,3	-				-		100 _	= 0/0/0/0 _ 47/0/0/0			
	24		Scoria	Vesicular, red in color, vesicles big at the top. Very	24-		30	9/0/0/0			
	26 —	/.		jointed, lower part filled with opal and silt. Upper part stopy, stopes up to 20cm	26		5	6/0/0/0 0/0/0/0			
	_	• / . •			_		80 -	0/0/0/0			
120,9	28 _	·		$Qc = \frac{10}{15-20} \times \frac{3-4}{3-4} \times \frac{1}{1} = 0,4-0,9$	28—		67	0/0/0/0 0/0/0/0		18,5-41m 5 LU	
	-			Lower part weakly cemented, breaks between hands.	_		59	6/0/0/0			
	30 —				30		45	22/0/0/0			
117,7	32			Basalt Andesite Very jointed, dark almost black and fine grained.	32		78 – 92 – 67 –	- 0/0/0/0 - 0/0/0/0 - 0/0/0/0			
	52 -	(\mathbb{R})	Dense	Dense, neavy in hand, slightly flowbanded. A few micropores present. Joints coated with silt.			70 70 25	=			
115,2	34 —	• 7.••		$Q_{U} = \frac{12.15}{12.15} \times \frac{3}{3} \times \frac{1}{1} = 0,3 = 1,1$	34 –		108 _ 88 _	_ 40/0/0/0 _ 50/0/0/0			
	_		Scoria	Flow banded, very jointed, reddish, vesicular. Vesicles filled with opal/silt.	-			E0/40/0/0			
112,2	36 —		Sound	2 33 3.4 1 . -	36—		93	33/0/0/0			
	-	•	Jointed	Qc = $\frac{33}{12-15} \times \frac{3-4}{3-4} \times \frac{1}{1} = 1,7-3,7$	_		25 50 =	0/0/0/0 0/0/0/0			
	38 –	• • • • •		Lower part very jointed, almost crushed.	38 -		61 68	11/0/0/0 0 <u>/0/0</u>			
109,8				Tholeiite basalt	40-			0/0/0/0 0/0/0/0			
	_			Gray-dark gray, heavy, slightly vesicular, jointed, 3+ random joint sets. Joints coated with opal and light colored secondary minerals	_		00 - 82	- - 24/0/0/0			
	42—				42—						
	-	R		Qc = $\frac{27}{12}$ x $\frac{1.5-3}{3}$ x $\frac{1}{1}$ = 1,1-2,3	-		94	36/0/0/0			
104.0	44—				44-		92	- 31/0/0/0 - 0/0/0/0		41-50m	
104,0	-						33 = 24 =	= 8/8/8/8 _ 0/0/0/0		25 LU	
	46—		Scoria	Vesicular, vesicles alongated in parts, vesicles coated/filled with opal. Highly jointed.	46-		47	22/0/0/0			
	48-				48-		30 = 23 =	0/0/0/0 0/0/0/0 0/0/0/0			
	_	• • • • •		$Qc = \frac{1}{12-15} \times \frac{3-4}{3-4} \times \frac{1}{4} = 0,5-1,1$	_		50	0/0/0/0 - 4/0/0/0			
98,8	50	• • • • /.	Bottom 50,1	<u>m</u>	50	Peferenc	28 Búrfell II	0/0/0/0 Biarni Biarnason	08-8305		1092

Almenna verkfræðistofan						Búrfell HEP Extension					Contractor Jarðb	Drill Sullivan 1						
dic	⊗ verktra	edis	tora	n		AT-1				Place: Sáms	Drill thickness: 55 mm ?							
	Land	lsvir	sjun				Corec	Hole				Date of dri 7/10 -	Illing: - 13/11 1962	AKS				
Coordinates	⁸ I SN93		Х:	460	849	Y: 400434	Elev.: 241,9	m.a.s.l.				Drawing ni 1 af 2	r.:	Approve SP3	_{ed:} S			
Elevation [m.a.s.l.]	Depth [m]		So profi	i le		Sample	Description			Depth [m]	CasIng PLT	Core [%]	RQD % Q _c 10/30/50/100	GWT	Per 5	meat	ollity (_U)
	_								Top SB	_								
	2 _						Olivine Basalt			2 _								
	-									-								
	4 _									4 _								
	6 _									6 _								
	-																	
	8 _									8 _								
	- 10_									10_								
	_	X			Ì		Hyaloclastite] _								
	12_				X					12_								
	14				$\langle \rangle$					14								
226,9									Btm SB				N/A					
	16_	Ì		ŀ.			Conglomerate		Тор ОВ	16_								
		· · ·	0	0		Slight	t Hydrothermal Alterati	on		10								
	-01	о • °л	o. C). 	. (7													
222,4	20 _				-		Basalt Andesit	e		20_								
	-					Coord												
	22_					Slight	aceous t Hydrothermal Alterati	on		22_								
	24 —									24_								
	-																	
	26 –									26								
	28_									28_								
	-																	
	30 —									30-								
	32_									32_								
	_									-								
	34 —									34_								
	- 36 -									36-								
205,4	_	-	- -															
	38 —						Basalt Andesit	e		38								
	-					Scoria	aceous	on		-								
	40-					Sign	i nyuluuleillai Alterau	OII		40-								
	42–									42-								
	-																	
	44									44-								
	46-									46-								
	-																	
	48—									48-								
192,6	 50					Scoria	aceous Hydrothermal A	lteration		50								

Reference: Búrfell Project, Project Planning Report Vol. 2., Harza Engineering Company International, February 1963.
SI.	Alm	ien	ņa	i.	Búrfell HEP Extension			Contractor Jarðb	oranir ríkisins	Drill Sul	livan 1		
Gre	Verkin	eoist	Uran		AT-1			Place: Sáms	staðir	Drill thic	^{:kness:} mm ?		
Coordinates	Lan	lsvirk	jun	2				7/10 -	<u>13/11 1962</u>	AK	<u>S</u>		
Coordinates	^{s.} ISN93		X: 4	60849	Y: 400434 Elev.: 241,9 m.a.s.l.			2 af 2		SP	5 5		
Elevation [m.a.s.l.]	Depth [m]		Soil profile		Sample Description	Depth [m]	CasIng PLT	Core [%]	RQD % Q _c 10/30/50/100	GWT	Perme 5	ability 10	(LU) 15 20
	_ 52 _				Basalt Andesite	52 -	-						
	54 _					54 -	-						
	56					56_	-						
184,4	58 _				Tholeiite Basalt	58_	-						
	 60 				Scoriaceous Slight Hydrothermal Alteration	- 60 _ -	-						
180,2	62_	-	-		— — — — — Tholeiite Basalt	62_	-						
	64 _				Hydrothermal Alteration	64 -	-		N/A				
	 66					- 66	-						
173,6	- 68-					- 68-	-						
	 70	2. C			Conglomerate	- 70-	-						
	 72		°. 0		(Sedimentary Breccia in original log) (Probably angular or subangular rock fragments)	- 72-	-						
	 74	0.) [] .		Slight Hydrothemal Alteration	74-	-						
	76 — —	0	0		Tuffaceous Sandstone	76 -	-						
163,0	78_					78-	-						
	80 — —	, ° 0	。 。 。	· · ·	Conglomerate (Sedimentary Breccia in original log) (Probably angular or	80-	-						
159,0	82_ _		· ·	· U.	subangular rock fragments)	- 82	-						
	84 — —				Tholeiite Basalt	84 -	-						
	86 — —					- 86	-						
153,7	- 88 -				Sandstone	88 -	-						
150,4	90— —				Slight Hydrothermal Alteration	90-	-						
	92— —				Tholeiite Basalt	92-	-						
147,7	94				— — — — — Tholeiite Basalt	94-	-						
	96— —				Scoriaceous Slight Hydrothermal Alteration	96-	-						
143,9	98— —				Bottom 143,9	98-	-						
	100				Reference: Burfell Project Project	100 Planning Re	port Vol. 2	Harza En	gineering Compan	 v Interna	tional Er	bruary	1963

87	Alm	enna	Búrfell HEP Extens	sion			Contractor Jarðb	oranir ríkisins	Drill Sul	livan 2	2	
exc	⊗ verkfra	æðistofan	PT-8				Place: Sáms	staðir	Drill thic 55 I	^{;kness:} mm ?		
	Lan	dsvirkjun	Cored Hole				Date of dri	Ing: 6/6 1962	Drawn: AK	S		
Coordinates	^{s:} ISN93	X: 461070),4 Y: 400584,1 Elev.: 245,9 m.a.s.l.				Drawing nr 1 af 1	.:	Approv SP3	∍d: S		
Elevation [m.a.s.l.]	Depth [m]	Soil profile	Sample Description		Depth [m]	CasIng PLT	Core [%]	RQD % Q _c 10/30/50/100	GWT	Perm	eability	y (LU)
	2 _		Basalt blocks Ash Loess O	<u>verburden</u> Top SB	_ 2 _ _					1,¢ 11	5-4m _U	
	4			Btm SB	4						3.8m	
240,3 239,3	6 _ _	-	Sandstone	Top OB	6 _ _					>2		'
	8 _		Conglomerate		8 _					6,8 30	9–8,7m LU	n
	10				10_					8,7	⁷ -11,7	'n
	 12				 12							
	_ 14 _				 14			N/A		11,7-1	6,2m	
231,1	 16		Tholeiite Basalt		 16							
	 18				 18-					16	,2-20r	m
225,8	_ 20_				_ 20_					30	LU	
	-		Bottom 225,8								T	
	22_ _				22_							
	24				24							
	26				26							
	28 —				28—							
	- 32-				 32							
					 34							
	- 36-				 36							
	- 38 -				 38							
	40				- 40-							
	-											
	42				42							
	44— —				44— —							
	46— —				46— —							
	48				48—							
	50				50							

Reference: Búrfell Project, Project Planning Report Vol. 2., Harza Engineering Company International, February 1963.

\$7	Alm	ienna		Búrf	ell HEP	Exten	sion			Contractor Jarðb	oranir ríkisins	^{Drill} Sul	livan	2	
GAC	V verktr	æðistofan			PT-9	9				Place: Sáms	sstaðir	Drill thic 55	[;] kness: <u>mm ?</u>	>	
	Lan	dsvirkjun			Cored I	Hole				Date of dri 7/6 -	Iling: 14/6 1962	Drawn: AK	s		
Coordinates	^{s:} ISN93	X: 461189	9,8 Y: 4006	51,7 E	Elev.: 246,6	m.a.s.l.				Drawing n 1 af 1	r.:	Approv SP:	_{ed:} S		
Elevation [m.a.s.l.]	Depth [m]	Soil profile	Sample	De	escription			Depth [m]	CasIng PLT	Core [%]	RQD % Q _c 10/30/50/100	GWT	Perr 5	neabl	Ity (LU)
	_						Top SB	_							
	2 _				Hyaloclastite			2 _							
	_														
	4 _							4				- P	3-6n	n	
241,0	6_						Btm SB	 							
	_				Conglomerate		Тор ОВ	_						6-9m	
	8 –							8 _						20 ili	J
237,7	-	<u>°л. /))</u>			Sandstone							┣		-	
235.7	10_							10_					9-12 1 LU	2m J	
	12_;	°. 0. C						12_							
	_														
	14				Conglomerate			14_			N/A				
	-							16							
	-01	ſ.											:	12-21 20 U	J J
	18_							18_							
	_														
	20 _							20_							
	- 22 -							22_							
223,4	_													40 LU	J Im
222,6	24		Bottom 222,6		Tholeiite Basa	lt		24						_	
	-							-							
	20 -														
	28 —							28_							
	_														
	30 —							30							
								32_							
	_							_							
	34 —							34							
	_							-							
	36							36-							
	38 —							38							
	_														
	40—							40—							
	42_							42-							
	-														
	44—							44-							
	_														
	46—							46-							
								48-							
	_							-							
	50							50							

Reference: Búrfell Project, Project Planning Report Vol. 2., Harza Engineering Company International, February 1963.

\$7	Alm	enna	Búrfell HEP Extension			Contractor Jarðh	oranir ríkisins	Drill Sul	livan 2
- CAL	⊠ verkfræ	eðistofan	PT-10			Place: Sáms	staðir	Drill thi	ckness: mm ?
	Land	svirkjun	Cored Hole			Date of dri 15/6	Iling: - 29/6 1962	Drawn: AK	S
Coordinate	^{s:} ISN93	X: 460944	4,8 Y: 400515,4 Elev.: 238,4 m.a.s.l.			Drawing ni 1 af 1	r.:	Approv SP	^{ed:} S
Elevation [m.a.s.l.]	Depth [m]	Soil profile	Sample Description	Depth [m]	CasIng PLT	Core [%]	RQD % Q _c 10/30/50/100	GWT	Permeability (LU) 5 10 15 20
	-		Olivine Basalt Top SB	-	-				
	2 _		— — — — — Hyaloclastite	2 _	-				
224.1	4			4 _					
234,1	_		Olivine Basalt		-				
	6 _			6 _	-				
	- 8 -			8 _	-				
			— — — — — Hyaloclastite	-	-				0.8-21.2m
227.5	10_			10_	-				40 LU
	 12		Olivine Basalt	12_	-				
	-			-	-				
	14 _			14_	-		N/A		
	16 _			16_	-				
	-			-	-				
	18_			18_					
	20_		Hyaloclastite	20_	-				
	_			-	-				
	22_			22_					
	24 –			24 -	-				
				-	-				
	26 -			26 _	-				
	28 –			28-	-				
				-	-				21,2-40,5m
207,2	30-			30_	-				25 LU
	32 –		Olivine Basalt	32-	-				
	-			-	-				
	34			- 34					
	36 —			36 –	-				
	-			-	-				
			— — — — — Hyaloclastite	- 30					
197,9	40-	XXXXXX XXXXX		40-	-				
	-		Bottom 197,9	-	-				
	42-			42-					
	44—			44-	-				
	-			-	-				
	40- -			40-	-				
	48—			48-	-				
				50	-				

Reference: Búrfell Project, Project Planning Report Vol. 2., Harza Engineering Company International, February 1963.

SI	Aln	nenna	Búrfell HEP Exte	nsion			Contractor Jarðb	oranir ríkisins	^{Drill} Sul	livan	1		
exc	∕⊗ verkfr	ræðistofan					Place: Sáms	staðir	Drill thic	kness:			
	Lar	ndsvirkjun	Cored Hole				Date of drl	ling:	Drawn:	9			
Coordinate	^{s:} ISN93	X: 460715	⊥ 5,00 Y: 400056,75 Elev.: 161,1 m.a.s.I	•			Drawing nr	::	Approve	ed:			
Elevation	Depth	Soil	Sample Description		Depth	CasIng	1 at 1 Core	RQD % Q _c	GWT	S Per	meab	ility (L	_U)
[m.a.s.l.]	[m]	profile	Sample Description		[m]	PLT	[%]	10/30/50/100°		5	10	15	20
	-	-	Overburden		-								
	2 _	-			2 _								
	-		Pumice		4								
155.0	_												
100,0	6 _			Top GT	6 _								
	_		Glacial moraine or till		-								
	8 _		4		8 _								
	-				-								
	10_		-		10_								
	10		4		12								
	12-				12-								
	14 _		-		14_			N/A					
	_		4		_								
	16_				16_								
	-				-								
	18_		4		18_								
	-												
	20-]		20-								
	22_				22_								
	_				_								
	24 –]		24 —								
	-		4		-								
	26 –				26 _								
133.1	-												
155,1	20-				20-								
	30 –		Slight Hydrothermal Alteration		30 –								
	_				_								
129,1	32-				32—								
	-				-								
	34				34								
	-		1		-								
	- 30				30-								
	38 –				38 –								
	_				_								
	40–				40-								
	-	·▲ · ▲ · ▲			-								
	42–		1		42-								
	-			Btm GT	-								
116,9	44-		Tholeiite Basalt	Тор ОВ	44-								
	46-				46								
113.7	_			Btm OB									
,	48–		Bottom 113,7		48-								
		-			-								
	50		<u> </u>		50								

Appendix E

Pictures of cores.

Búrfell II Kassar 11 - 12 af 15 BF - 1 107,4m - 127,2m

And a second	
N	5. 108.6 108?
	Contract of the State of the State of the State of the State
	111.2 J (2.1.)
NFS NFS	L- LAD S
S. 115.1	
s. tier	1162
Participation and the Approximation of the des	
1720 <mark>2</mark> C.	
120° C	1212
120 <u>2</u>	1212 17272
4F 120,º 172,º 172,3 ⁻	1212 1722 1722
120° 120° 123°	1/2/2 1/2/2 1/2/2 1/2/2

Búrfell IIKassi 15 af 15BF - 1147,0m - 151,5m

Symi 150.7m

Separi 147

NES

10.007

1 150.1

.1470

151,5m

Búrfell II BF - 30

Boxes 3 - 4 of 21 21,50m - 36,35m

J.D.C

Búrfell IIBox 1 - 2 of 7BF-323,25m - 40,0m

Appendix F

Logs of rotary pneumatic percussion drilled boreholes.

Explanations of symbols

Rock magnetisation Normal / Reverse / Anomalous

Permeability Interval (in metres) and LU values

kN = average readings from point load test MPa = point load strength index IS 50

Water level depth in meters (date)

15,5-24,7m >100 LU 5,0 kN

11,0 MPa

Cuttings samples

Point Load Test (PLT)

Casing

Q - system of rock mass quality

$$Q = \frac{RQD}{J_n} \times \frac{J_r}{J_a} \times \frac{J_w}{SRF}$$

RQD (Rock Quality Designation) Jn (joint set number) Jr (joint roughness number) Ja (joint alteration number) Jw (joint water reduction factor) SRF (Stress Reduction Factor)

 $Q_{c} = \frac{RQD}{J_{n}} \times \frac{J_{r}}{J_{a}} \times \frac{J_{w}}{SRF}$

Jw and SRF are evaluated as 1/1 in the boreholes Q $_{\rm c}$ = Q evaluated from core sample from borehole

Explanations of formation

- FG Finiglacial
- GT Glacial till
- SB Sámsstaðarklif basalt
- SM Sámsstaðarmúli group
- OB Older Búrfell group

Appendix G

Mapping of glacial moraine according to (Pétur Pétursson (1982)).

Skýringar sjá mynd 4 Staðsetningar sjá mynd 2

Appendix H

Exploration tunnel in 1962. Location and geological section (Haukur Tómasson (1963)) and studies of progress (Haukur Tómasson (1967)).

stöðulónum, sem birtist í Verkfræðingatímaritinu, 4.–7. hefti 1964.

8.4 Jarðsveiflumælingar.

Til könnunar á þykkt lausra jarðlaga ofan á berggrunni er mest notaður Borro-bor, en einnig hafa verið notaðar jarðeðlisfræðilegar mælingar svo sem jarðsveiflu- og jarðviðnámsmælingar. Jarðsveiflumælingarnar byggja á mælingu hljóðhraða í jarðlögum, en hann er miklu meiri í bergi en lausum lögum. Jarðviðnámsmælingar byggja á því, að rafmagnsviðnám í jarðlögum er mjög mismunandi. Jarðsveiflumælingar henta betur til mælinga á þykkt lausra jarðlaga og hafa langmest verið notaðar. Yfirleitt er ekki hægt með jarðsveiflumælingum að finna þykkt lághraðalaga undir lögum með hærri hraða. Það var þó reynt við Búrfell að finna þykkt millilagsins undir fyrsta hraunlagi og var það gert með því að sprengja dínamit niðri í holum, sem náðu niður í millilag. Niðurstaða fékkst, sem nægði til að leiðbeina frekari borunum, sem var tilgangur bessarar mælingar.

8.5 Borro-boranir.

Borro-bor er lítill höggbor og eru stálstangir reknar með honum niður á fast berg. Fast berg er þá skilgreint á því dýpi, sem Borro-borinn kemst. Að sjálfsögðu hefur þetta sínar takmarkanir, því borinn getur stöðvast á stórum steini og einnig getur smáharðnað niður á fast þannig, að engin skörp skil séu milli fasts bergs og jarðvegs. Við borun með Borro er höggafjöldinn talinn þannig, að talin eru höggin, sem þarf til að slá borinn niður hverja 1/2 m færu. Höggtalningalínurit gefa verðmætar upplýsingar um jarðlög þau, sem borað er í gegnum. Bæði eru þau til hjálpar við greiningu þeirra og einnig má nota höggtalningalínurit til þess að reikna út skriðhorn og fá vissar hugmyndir um burðarbol og fleira. Á mynd 11 eru sýnd meðaltöl höggtalningarlínurita í nokkrum mismunandi jarðlögum við Búrfell.

8.6 Könnunargryfjur.

Til þess að bæta upp niðurstöður Borro-boranna og annarra mælinga á þykkt lausra jarðlaga henta könnunargryfjur mjög vel, því í þeim er unnt að gera athugun á berginu undir og einnig að fá örugga greiningu á lausu jarðlögunum. Þetta var töluvert gert við Búrfell, sérstaklega á stíflustæðunum. Voru sumar holurnar handgrafnar, en þó flestar grafnar með jarðýtu.

Mynd 11. Höggtalningarlínurit fyrir Borro-boranir. 1. er sandur frá ísaldarlokum; 2. er yfirborðslag hraunanna, sem er sand- og vikurblandið hraungjall og molar; 3. er sama, en liggur þar undir þykku vikurlagi; 4. skriður við Sámsstaðamúla, aðallega vikur; 5. vikur, mjög stórgerður, sem liggur ofan á 3.

Figure 11. Blow count in Borro soundings. 1. Finiglacial sand; 2. The surface layer on the postglacial lava flows, which is sand and pumice mixed with scoriaceous lava fragments; 3. is the same but is underlaying thick pumice layer; 4. Talus at Sámsstaðamúli, mainly pumice; 5. Very coarse pumice overlaying 3.

8.7 Rannsóknarjarðgöng.

Rannsóknarjarðgöngin, sem gerð voru við

Búrfell 1962 gáfu ýmsar fróðlegar niðurstöður og þar sem úrvinnsla á þeim hefur hvergi birzt, finnst mér rétt að birta þær hér. Ætlunin var, að jarðgöngin næðu inn í neðanjarðarstöðvarhús, sem þá var mest hugsað um. Staðsetning þeirra var einnig gerð með þau sjónarmið í huga, að vegalengdin inn í stöðvarhús yrði sem stytzt og halli ganganna sem minnstur. Engar rannsóknir voru gerðar áður en hafizt var handa nema séð var, að jarðgöngin mundu byrja í mórenu, sem menn þó bjuggust við að væri þunn yfirborðsskán. Talið var, að kostnaður við jarðgangagerðina mundi sparast upp í lægri tilboðum ef hægt væri að sýna tilbjóðendum bergið, sem vinna ætti frá jarðgöngunum. Einnig mundu þau spara tíma við byggingu, því fljótlegt væri að stækka þau í aðkeyrslugöng fyrir stöðvarhússsprengingar og aðra vinnu þar.

Jarðgangagerðin var framkvæmd af vinnuflokki frá Almenna byggingafélaginu og var áætlað að ljúka 6 m á dag. Stærð ganganna var hin minnsta mögulega, eða 2 m á hæð og 2 m á breidd. Var því ekki hægt að koma að nema mjög smáum tækjum við gangagerðina. Göngunum hallaði 4.6% inn á við.

Mórenan, sem jarðgöngin byrjuðu í, reyndist vera miklu þykkri en búizt var við og voru göngin 130 m í mórenu. Þar fyrir innan tók við andesit, og hittu göngin á lagamót með andesit breksíu að ofan og heillegu andesiti í botni. Lögunum hallaði meir en göngunum, og gengu þau því smám saman upp í andesitbreksíu eingöngu, og síðan andesit í lofti og breksíu í gólfi, og innst voru þau eingöngu í andesiti. Í mórenunni var yfirleitt ekkert vatnsrennsli inn í göngin fyrr en komið var innst í hana nærri andesitinu. Þar var mórenan mun sandbornari og stóð verr. Fyrir innan mórenuna var alltaf töluvert innrennsli vatns, sem smájókst eftir því sem innar og neðar dró. Þetta innrennsli hafði töluverð truflandi áhrif á verkið, því vatnið rann að vinnustaðnum vegna halla ganganna. Vatnsrennslið var allan tímann í innstu 10-20 m ganganna en göngin þornuðu utar.

Helztu vinnslueinkenni hinna ýmsu jarðlaga voru: Leir- og mélurík mórena þótti sæmileg í borun en fremur erfið í útmokstri vegna þess, að hún vildi klessast við skóflur. Hægt var að ná mikilli inndrift í hverri umferð. Mórenan stóð vel en hélt áfram að veðrast allan tímann, sem verið var að vinna í göngunum. Opnuðust þá upp smásprungur og steinar losnuðu.

Sandkennda mórenan var erfið í allri vinnslu vegna vatnsaga. Inndrift var lítil, borun erfið og virtist mórenan standa illa meðan rennsli var í henni, en vel eftir að hún þornaði. Erfiðast var að moka henni, því vatn og mórena hrærðust saman í þunnan velling.

Andesitbreksían var mjög erfið í borun og sprakk illa. Inndrift var því lítil en vatn og salvi skildi sig vel að svo hún var auðveldari í mokstri en sandkennda mórenan. Göngin stóðu ágætlega í henni og var auðvelt að fá rétta lögun á þau.

Hið óreglulega stuðlaða andesit undir breksíunni var auðveldara í borun og hleðslu og formaði sig nokkuð vel. Það var alltaf unnið með breksíu og skil þess og breksíunnar óglögg.

Andesitið í lofti ganganna innst var grófstuðlað og mjög þétt. Það var seinborað vegna hörku en annars auðvelt í vinnslu. Það sprakk oft með stuðlum og voru því töluverðar yfirsprengingar í því. Ekki bar á láréttri kleifni í stuðlunum, sem er svo áberandi í veðruðu andesiti.

Á mynd 12 er í línuritsformi úrvinnsla á flestu því, sem í tölum var talið í sambandi við þessi göng. Neðsta línuritið sýnir gang verksins og jarðlög, sem farið var í gegnum. Upp á endann er einskonar jarðlagasnið af göngunum með gólfið til vinstri og loftið til hægri. Sama snið er sett á tímaásinn og sýnir í hvaða jarðlögum göngin eru á hverjum tíma.

Næsta línurit sýnir fjölda manna við jarðgangagerðina. Ekki tókst að ná hinum áætluðu 6 m á dag og var því stöðugt verið að bæta við mönnum til þess að reyna að flýta verkinu. Ekki virtist nást neinn árangur með því, eins og línuritin næst fyrir ofan bera með sér.

Þriðja línuritið sýnir lengd graftar á dag. Graftarhraðinn er mestur í mórenunni, áður en farið var að gera tilraunir með sprengiefnanotkun, sem dró nokkuð úr afköstum. Minnstur er hann innst í mórenunni. Í andesitinu var hann lítill lengi framan af en óx mjög verulega, þegar fengin var norskur verkstjóri, Olav Töndervold, til að reyna að flýta verkinu. Hafði koma hans veruleg áhrif, þótt honum tækist ekki að ná áætluðum afköstum.

Næsta línurit sýnir afköst í m³ á mann á dag. Hefur það sömu sveiflur og næsta línurit fyrir neðan, en vegna þess hversu miklu færri menn voru fyrst eru afköstin langmest í mórenunni utan til. Fer það þar upp í 2 m³ á mann á dag.

Næsta línurit sýnir inndrift á umferð og tíma alls á umferð. Inndriftin er mest í mórenunni frá 2.0–2.4 m en inni í andesitinu yfirleitt um 1.6 m. Tími á umferð var lengi vel milli 15 og 18 tímar en minnkaði niður í 12 tíma þegar Olav Töndervold kom.

Mynd 12. Línurit um gang við gerð tilraunajarðganga við Búrfell 1962.

Figure 12. Graphs showing the progress in tunnelling when an exploration tunnel was done 1962.

Bortími á umferð og boraðan metra er næsta línurit og þar næsta er útmokstur á umferð og rúmmetra. Þessi línurit eru mjög lík með topp frá sandkenndu mórenunni þangað til norski verkstjórinn kom. Honum tókst að auka borhraðann meira en útmoksturshraðann.

Efsta línuritið sýnir hleðslu, útblástur og annað, sem ekki fellur undir neitt þeirra atriða, sem þegar er upptalið. Hleðslulínuritið er mjög svipað og bor- og útmoksturslínuritin. Litlar sveiflur eru á útblásturslínuritinu. Útblásturstíminn er mestur snemma, nær svo lágmarki og vex svo jafnt og þétt eftir því sem innar dregur. "Annað" hefur tvo toppa. Er annar þegar verið er að gera tilraunir með sprengiefni en hinn þegar reynt var að auka inndrift inni í andesitinu, en það gaf mjög slæma raun. Norska verkstjóranum, Olav Töndervold, tókst að minnka tímann, sem fór í "annað" mjög verulega, eða niður í 2 tíma frá því að hafa verið yfirleitt 4 tímar.

Hætt var við tilraunagöngin þegar þau voru orðin 258 m löng, enda var þá útséð um, að þau mundu ekki verða búin fyrir þann tíma, sem ætlað var að skila áætlun um virkjunina. Ástæðuna til þess, að ekki tókst að ná tilskildum gangi, tel ég liggja í töfum vegna vatnsaga og því að bergið leyfði ekki nema mjög litla inndrift á hverja umferð. Gangurinn var beztur í mórenunni utantil eða allt upp í 4 m á dag. Hefði sú hagræðing, sem fylgdi komu Olavs Töndervolds verkstjóra verið komin, þá hefði þar mátt ná upp undir 6 m hraða á dag með 2.4 m inndrift. En með þeirri inndrift sem möguleg var í andesitinu hygg ég að 6 m áætlunin hafi alls ekki verið raunhæf.

9. Aðstæður á stöðum helztu mannvirkja.

Stíflustæðið er á hraununum, sem runnið hafa á eftirjökultíma. Aðstæður eru þannig, að Þjórsá rennur í þéttum stokk, sem aurburður árinnar hefur þétt. Langt út frá ánni á báða vegu hefur einnig borizt mikill leir úr ánni út í hraunið. Í efra borði hraunsins er, auk leirsins úr ánni, mikið um eldfjallaösku og vikur aðallega úr Heklu. Saman við þetta er blandað hraunmolum alveg upp á yfirborð. Hraunmolarnir eru sennilega frostlyftir. Þetta yfirborðslag er yfirleitt nokkrir metrar á þykkt og tekur þá við hið massiva hraun með mjög ójöfnu yfirborði. Jarðvatn er lítið í yfirborðslaginu, en niður við botn fyrsta hrauns kemur í jarðvatn. Er það venjulega 10-12 m fyrir neðan vatnsborð árinnar og hefur hún engin áhrif á það. Undir fyrsta hraunlagi, sem er venjulega um 18 m að þykkt, að meðtöldu lausa yfirborðslaginu, kemur millilag úr sandi og vikri eða þar sem annað hraun er undir, nákvæmlega eins lag og yfirborðslag efsta hraunsins.

Ekki er þess að vænta, að neinn verulegur leki verði í gegnum hraunið og sá leki, sem í fyrstu kann að verða, mun hverfa mjög fljótt vegna þéttingar af aurburði árinnar. Þar sem lekaleiðir eru stytztar var talin þörf að þétta millilag vegna hættu á grefti þess við aukinn jarðvatnsþrýsting. Verður þar gert þéttitjald niður í gegnum millilag, en að öðru leyti mun stíflan byggð á þéttu efsta hrauni.

9.2 Jarðgöng.

Aðrennslisgöng virkjunarinnar liggja í blágrýti og blágrýtisbreksíu myndaðri á lagamótum. Hvert blágrýtislag er venjulega um 10 m að þykkt með breksíunni og hallar lítið eitt til suðausturs. Þar eð göngunum hallar til suðvesturs skera þau nokkur lagamót. Einnig munu göngin liggja í gegnum 2 sprungur. Blágrýtið er með tvennskonar stuðlun, grófa og reglulega stuðlabergsstuðlun og óreglulega og miklu þéttari stuðlun, sem við köllum kubbabergsstuðlun. Bæði stuðlabergið og kubbabergið mundi samkvæmt Karl Terzaghi teljast mjög þéttsprungið berg og þurfa mikla styrkingu. Svo er nú samt ekki. Sprungufletir stuðlabergsins liggja þétt saman og eru svolítið bylgjaðir þannig, að hreyfing getur ekki orðið eftir þeim án þess að brjóta massivt berg. Stuðlarnir eru sem sagt mjög vel læstir saman. Kubbabergið hefur yfirleitt smærri og óreglulegri stuðla. Það er því einnig læst saman á svipaðan hátt auk þess sem það fær styrkleika á því, að stuðlarnir eru að heita má vafðir saman. Hvelfingar standa því ágætlega bæði í kubbabergi og stuðlabergi, en hægara er að forma hvelfingar í kubbabergi.

Breksían á lagamótum hefur allt aðra jarðtæknilega eiginleika eins og þegar fékkst reynsla af í tilraunagöngunum 1962. Breksían springur mjög illa og steinar eru oft hálflausir í millimassanum þannig, að hún borast og hleðst illa. Það sem samsvarar stuðlun blágrýtisins finnst varla og má næstum kalla bergið massivt með tilliti til þess. Það virðist standa vel í hvelfingum en þörf er á að verja það gegn vatnsgrefti.

9.3 Stöðvarhús.

Stöðvarhús virkjunarinnar er aðallega í móbergi, einkum þeirri gerð þess, sem nefnist tuff. Einnig reyndist vera kerfi af blágrýtisgöngum þar. Tuffið er mjög vel samlímt, enda er

Summary.

A geological investigation at the Búrfell Hydropower site on the Thjorsá River has been going on since approximately 1960, guided each time by the project under consideration. First it was proposed to build a large dam between Búrfell and Sauðafell but in 1961 it was abandoned because of difficult geological conditions on the damsite and a new project was proposed with a dam farther upstream near a site already chosen 1915 by a Norwegian engineer, Sætersmoen, in a study on the hydro-power potentials in the rivers Thjorsá and Hvítá. This new site was investigated thoroughly in 1962 and onward. To begin with a tailrace development was proposed but in 1964 a headrace development was planned and that project is now under construction.

The rocktypes in the project area are a variety of volcanic rocks with basaltic lava flows as the most common rock. Other types are tuff, breccias and pillowlavas mostly formed through subglacial and subaqueous eruptions, dolerite (gray basalt (diabase) lava flows, andesitic lava flows and rhyolitic lava flows and intrusions. Some sedimentary rock does also exist but has similar properties as tuffs or breccias.

The geological history of the Búrfell area starts some 4 million years ago and the oldest formation is a basalt formation at the south toe of Búrfell. Next in age is the older Burfell formation which was built up by an active volcanism at some distance west of the Búrfell area. The erupting products range in composition from basalt through andesite to rhyolite. In Sámsstaðamúli that formation is named Older Burfell Formation. In Sámsstaðamúli a valley was eroded in the Older Burfell Formation which afterwards was filled with moberg, a subaqueous formation. Sandstone also deposited in the water and then along the hillsides a talus breccia was formed and finally the valley was filled with basalt lava flows. These formations are all named Sámsstaðamúli Group SM. During that time the eruption fissure was just west of Sámsstaðamúli or even in the westernmost part of it.

The first unmistakable glacial occured after the time of the SM group and during that time a subglacial eruption occured in Burfell and the thick pillow lava top of Búrfell was formed. It was almost one million years ago. In this eruption a very thick intrusive layer which is underneath most of Sámsstaðamúli was formed.

After this there was a valley or a canyon erosion in Sámsstaðaklif which shortly after-

wards was filled with basaltic lava flows. This formation is named Sámsstaðaklif Basalt Formation SB. When this was formed the volcanic zone was north or northeast of Búrfell.

Doleritic rock was formed extensively during the last interglacial in Iceland. The dolerite (gray basalt) at Skeljafell might be of that age. The layers are almost horizontal and there is every indication of low age. The formation is called Skeljafell Dolerite SD.

During the last glacial the land was sculptured almost to the present form. The móberg ridges east of Ytri Rangá were also formed in subglacial eruptions. In Postglacial time 1.e. during the last 10.000 years a substantial addition has been through sedimentary deposits, deposited on the South Icelandic lowlands in Finiglacial time when the sealevel was much higher than at present time and through lava flows coming from the Veiðivötn area which have built up the valley bottom east of Búrfell about 100 m, which create the head utilized at Búrfell. These lava flows have changed the drainage pattern of southern Iceland substantially as shown on fig. 6. Another volcanism in postglacial time is in the Hekla region only 12 km. away from Búrfell. It has formed enormous layers of pumice and ash which forms thick overburden in the Búrfell area.

Dating of the formations has mainly been through measurements of paleomagnetic polarity of the rocks. In figure 7 is a scheme showing the polarity epochs and events as they are now dated and tentative correlations of own polarity measurements.

The usual dip is towards east to north and clearly increases with increasing age. The oldest basalt formation is dipping $4^{\circ}-5^{\circ}$ but the youngest formations have practically no dip. There are two types of faults in the area: normal faults with vertical movements and strike slip faults with horizontal movements. At some of the strike slip faults a horizontal movement of the order of magnitude 500–800 m can be suspected. This is indicated by the offset of the other set of faults crossing it. The fault lines are not seen on the postglacial lava flows nor in the youngest moder.

The geological investigation was done with: drilling permeability testing, ground water level measurements, seismic sounding, Borro sounding, test pits, and exploration tunnelling.

The drilling is the most extensive investigation. On the whole 128 holes have been drilled with total length of almost 6000 m. Figure 10 shows the result of an analysis of the frequency of the different permeability in the layers which make up a lava field. It shows clearly that the lower contact of lava flow is by far the most permeable but the interbed has the lowest permeability. This was tested in the postglacial lava fields but there is every indication that this is a common rule independent of the over all permeability of the lava field which decreases rapidly with increasing age. In the uppermost line of figure 10 the permeability test is shown in rock which is mostly between one and two million years old.

Figure 11 shows results from blow count with the Borro sound which is really nothing but a small percussion drill designed for overburden drilling only. The friction angle and indications of bearing capacity can be obtained from these diagrams.

The exploration tunnel made 1962 was 258 m long and was in moraine, massive andesite and andesitic flow breccia. The diagrams on figure 12 show the progress and time studies connected with this tunnel.

The damsite is situated on postglacial lava flows highly permeable and with ground water level more than 10 m below river level. The tightening effect of the silt in the river water will take care of most of the water loss but where leakage path is shortest a slurry trench is made for the safety of structures and to decrease the loss of water.

The tunnel will be in basalt lava flows usually densly jointed. It stands though very well because the columns are so tight together that movement cannot occur without breaking the massive rock. The flow breccia at the contacts is much softer a rock than the basalt but it is sparsely jointed and stands well in tunnels. It is though difficult in blasting and needs much more explosives than the hard basalt.

The power house is founded on tuff and tuffrich breccia. Also a set of basaltic dikes is crossing the power house area. The joint pattern has strong tendency to be parallel to the dikes and faultzones and the jointfaces are often a little altered to clayish material which makes it more problematic than the joints of the basalt even if it is much closer spaced.

Heimildir.

- Skýrslur til raforkumálastjóra flestar fjölritaðar og fjalla að einhverju leyti um jarðfræði Búrfells.
- Guðmundur Kjartansson 1959: Reports to the State Electricity Authority on the Geology at some sites for Potential Hydro-Power Developments in the Thjórsá and the Hvítá River systems Southern Iceland.
- Þorleifur Einarsson 1960: Jarðfræði Búrfellsvirkjunar.
- Þorleifur Einarsson and Haukur Tómasson 1962: Búrfell, General Geology.
- Jón Jónsson and Haukur Tómasson 1962: Búrfell, The Stratigraphy of Sámsstaðamúli.
- Harza Engineering Company International 1963 Búrfell Project, volume II, appendix B, Geology.
- Haukur Tómasson 1963: Temperature Measurements in Drillholes at Búrfell.
- Haukur Tómasson 1963: The Layer SM_a.
- Haukur Tómasson and Elsa G. Vilmundardóttir 1964: Búrfell Project, The modefied Saetersmoen Scheme; Appendix: The Geology

Aðrar heimildir:

- Allan Cox, Richard R. Doell, G. Brent Dalrymple 1965: Quaternary Paleomagnetic Stratigraphy, úr The Quaternary of America.
- Ian Mc Dougall and F. H. Chamalaun 1967: Geomagnetic Polarity Scale of Time; Nature, v. 212. No. 5069.
- Trausti Einarsson 1962: Upper Tertiary and Pleistocene Rocks in Iceland, Reykjavík.
- Karl Terzaghai 1964: Introduction to Tunnel Geology. Rock Tunneling with Steel supports, Youngstown, Ohio.
- G. Sætersmoen 1918: Vandkraften i Thjórsá Elv, Island.
- Jakob Björnsson og Haukur Tómasson 1862: Virkjunarrannsóknir á vatnasviðum Þjórsár, Hvítár og Jökulsár á Fjöllum. Ársskýrsla Sambands íslenzkra rafveitna 1962.
- Haukur Tómasson 1963: Jarðfræðilegar aðstæður til virkjunar Þjórsár við Búrfell og Jökulsár á Fjöllum við Dettifoss. Ársskýrsla Sambands íslenzkra rafveitna 1963.
- Haukur Tómasson 1964: Aurburður og lekahætta úr uppistöðulónum. Tímarit V.F.Í.

Appendix I

Surface powerhouse. Cross sections from thrust rotary soundings (Almenna verkfræðistofan hf. (1982)).

A 10 V 2 A IO V A 10 X A 10 \ominus θ Ð Θ HÆÐ Eml 160 150

0 0,7 1,5 2,8 TONN

SKYRINGAR :

5

0 0,7 KLÖPP

1,5 2,8 TONN

ØGEONOR - BORVAGN

0 0,7 1,5 2,8 TONN KLÖPP

140

2,8 TONN

A13 H BORUN 0 H/EÐ [m] 170 KLÖPP 160 150 140 ZALMENNA VERKFRÆÐISTOFAN H.F. 0 LANDSVIRKJUN SIMI 3-85-90 STÆKKUN BURFELLSVIRKJUNAR REYKJAVİK STÖÐVARHÚS OG FÍPULEIÐ SNIÐ 12-13 Dags 25.10.82 M Hannad J. S. Teiknad HS. Samp Nr. 109

Háaleitisbraut 68 103 Reykjavik landsvirkjun.is

landsvirkjun@lv.is Sími: 515 90 00

