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Results of Phase 3 of the multidisciplinary structural analysis of beistareykir and surroundings
are presented here. A number of data such as previous drilling targets, potential permeable
fractures as paths for feeders in wells, formation temperatures, and resistivity are analysed
and correlated with the structural map made in Phase 1. The goal is to provide new insights
into the combined tectonic of rift and transform zones in North Iceland, which controls the
geological processes and geothermal activity. Results are used to suggest the best potential
targets for drilling. The main results of this analysis and correlations are: (a) A higher number
of fractures, belonging to both the rift and transform plate boundaries, seems to be present
at depth in the areas of the 10 previous drilled exploration/production wells. (b) The analysis
of feeders and the fracture pattern shows that the Riedel shears of the transform zone such
as the dextral WNW and NW, as well as the sinistral ENE oblique-slip faults are the main
permeable fractures, in addition to a few shorter northerly segments. These are the same sets,
and in some cases the same fractures that bound the alteration block, let gases seep through
the surface, compartmentalise the formation temperatures in the geothermal reservoir, and
control the resistivity anomalies. (c) Among the Riedel shears, few play more critical roles. As
examples, the WNW Stérihver-Baejarfjall dextral fault shifts the entire beistareykir fissure
swarm. Its splay segment enters the reservoir so that the northerly segments to its north are
not the continuation of the northerly segments to its south. A few of the ENE weak zones
cutting the northern part of the Bajarfjall and its northern slope are among the most critical
structures for geothermal activity. (d) Based on the identified fracture sets of the rift and
transform zones, five areas are suggested for drilling. The central area coincides with the up-
flow zone from the reservoir and should provide the best production. The other four
surrounding areas are the best candidates for exploration drillings. Several of the northerly
rift-parallel and Riedel shears of transform zones are selected as structural targets within each
of the five areas. These structures are mostly fracture intersections but also a few fracture
traces.
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1 Introduction

From 2013 to 2015, [SOR undertook a geological re-evaluation of Peistareykir and
surroundings in three phases (Khodayar and Bjornsson, 2013; Khodayar, 2014; Khodayar
et al., 2015). The emphasis of the first two phases was to provide Landsvirkjun with an
overview of the tectonics processes controlling the surface and sub-surface geology,
including the geothermal activity. The ultimate goal is to suggest new targets for drilling
based on the results of the three phases of the multidisciplinary structural analysis.

The preparatory works carried out during Phases 1 and 2 brought new insights into the
regional and local tectonics of Peistareykir such as:

¢ The fracture sets of rift and transform zones at Peistareykir and surroundings
from aerial images, and their preliminary statistical analysis.

* Correlation of the tectonic pattern with earthquakes and structural data from
televiewer image logs in well PG-8.

¢ Tectonic control of surface alteration and gases.
* Tectonic settings of resistivity, aeromagnetic and gravity anomalies.
* The shift of the Peistareykir fissure swarm on one of the transform zone faults.

This report presents the results of Phase 3 of the multidisciplinary geological exploration
at Peistareykir and surroundings, the synthesis of the results from the three phases,
along with new areas and structural targets for drilling and exploration. As the
geothermal field is at the junction of the Northern Rift Zone and the transform zone of
Tjornes, at any level it is subjected to deformation resulting from both types of plate
boundaries (Figs. 1a and 1b).

The focus of Phase 3 is on the analysis of existing borehole data and their structural
interpretation, as well as on the overall correlation and synthesis of the results obtained
from the multidisciplinary geological exploration of all the three phases. The main topics
of Phase 3 are:

e A brief review of existing structural interpretations of Peistareykir and previous
suggested structural targets for drillings.

e New structural analysis of feeders in the 10 Peistareykir wells and identification
of potential permeable fractures.

e DPossible structural control of formation temperatures and feeders in wells, and
their relation to the shift of the Peistareykir fissure swarm.

e Correlation of all geophysical and geological sub-surface data with the structural
map of rift and transform zones at Peistareykir from Phases 1 and 2.

e Comprehensive structural model of the Peistareykir geothermal field.
e Synthesis of the findings of the three phases.

The outcome of the above analysis and synthesis should provide Landsvirkjun with an
in-depth view of how the tectonics of rift and transform zones control various aspects of
geothermal activity in the Peistareykir fractured reservoir. With a better understanding
of the fracture sets, their depths, and their roles in fluid flow, alteration, and heat, we
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hope to offer a comprehensive tool for the choice of new areas and structural targets for
exploration and production drillings in Peistareykir. The choice of these drilling targets
is based on the most complete exploration effort to-date.

2 Geological settings

2.1 The general context

The Peistareykir geothermal field is located within the Northern Rift Zone (NRZ), and
between the Husavik-Flatey Fault and the Dalvik Lineament of the Tjornes Fracture
Zone (TFZ) (Fig. 1a). Due to its position at the junction of a rift segment and a transform
zone, the geothermal field has been in a highly deformed area where rift-jumps,
flexuring, block rotation and intense fracturing occur since Miocene (e.g., Semundsson,
1978; Voight and Mamula, 1983; Jancin et al., 1985; Young et al., 1985; Garcia et al., 2002).

The known features of the plate boundaries are:

e  Rift fissure swarm: Five parallel fissure swarms stretch within the 40 km width of
the NRZ. The Peistareykir and Manareyjar fissure swarm are the westernmost of
these fissure swarms and are located partly on-land and partly offshore.
Northerly normal faults and open fractures are dominant within the rift
segments. Although numerous eruptive cones are aligned on fractures, very few
northerly dykes crop out within the Peistareykir fissure swarm and no apparent
caldera is known at the surface. The bedrock of Peistareykir and surroundings
spans Miocene to interglacial/subglacial times (Bruhnes-Weischselian), and
consists of basaltic, andesitic and dacitic lavas, hyaloclastites, local rhyolite, and
the Pliocene marine fossil-rich Tjornes formation. The postglacial basaltic lavas
are younger than 15.000 years. They include the latest eruption of 2400 years ago,
which emitted picrite from the Storihver crater within the Peistareykir fissure
swarm (Seemundsson et al., 2012a).

o Transform zone: The TFZ is considered to have been active at least since 6-7 Ma
ago, with both subsidence in the order of hundreds of metres and a dextral shift
of some 100 km (e.g., Seemundsson, 1978). The transform zone is some 120 km
long, about 70 km wide, consisting of three major WNW trending structures, i.e.,
the Grimsey Oblique Rift, the Husavik-Flatey Fault (HFF) and the Dalvik
Lineament (Fig. 1b). The HFF has an established fault plane where earthquakes
occur on it offshore (Rognvaldsson et al., 1998). The Dalvik Lineament has a
sharp signature in the topography in its eastern part, but earthquakes are
recorded mostly in the western part of this structure on north-easterly sinistral
strike-slips to the north of the lineament (Stefansson et al., 2008). GPS measure-
ments (Geirsson et al., 2010) indicate continuous deformation of the TFZ, with
earthquakes up to M7 (Einarsson and Bjornsson, 1979). Focal mechanisms of
earthquakes in the TFZ indicate strike-slip motions on northerly, NNE/NE,
WNW and NW fracture segments (Rognvaldsson et al., 1998), supported by
relocated earthquakes at Peistareykir (Hjaltadottir and Vogfjoro, 2011).



Surface geological investigations in the adjacent Flateyjarskagi (Voight and Mamula,
1983; Young et al., 1985; Mamula and Voight, 1985), and Peistareykir (Gislason et al.,
1984) also show the existence of several fracture sets at the junction of the rift and the
transform zone. However, the geological maps of Peistareykir and surroundings (Fig.
1c) favour dominantly the rift-parallel northerly normal faults and open fissures along
with a few WNW fracture segments (e.g., Semundsson et al., 2012b).

2.2 Recall of the structural re-evaluation of Peistareykir

More recent structural re-evaluations of Peistareykir and surroundings from aerial
images and subsurface (Khodayar and Bjornsson, 2013; Khodayar, 2014; Khodayar et al.,
2015) reflect the same tectonic pattern as in most previous works, in which six fracture
sets belonging to the rift and transform zones are widespread. These new re-evaluations
show the role of the six fracture sets in the overall deformation and the degree in which
they control the geological processes and the geothermal activity. A quick overview of
the results from Phases 1 and 2 is given below:

e About 10729 fracture segments of variable lengths were mapped from aerial
images. They consist of the northerly rift-parallel fractures and five Riedel shears
of the transform zone striking NNE, ENE, E-W, WNW and NW/NNW. Except
for the discreet E-W set, the other Riedel shears are oblique-slips, with dextral
(WNW, NW/NNW) and sinistral (NNE and ENE) motions based on their en
échelon geometries. The six fracture sets are grouped in tightly parallel weak
zones and spread throughout the region (Fig. 2b).

e The detailed statistical analysis of the fracture frequency vs. rock age reveals that
the WNW, NNE, ENE, NW/NNW and E-W Riedel shears of the transform zone
dominate in the 2400 year old lava in the middle of the Peistareykir fissure
swarm. As rocks become older, the northerly fractures are more prominent and
more frequent on the shoulders of this fissure swarm where they constitute up to
10% of the total fracture population. Thus, the Riedel shear seems more dominant
at the youngest stage of fracture formation. As an example, the last eruption in
the central part of Peistareykir fissure swarm (2400 years ago) occurred on a
WNW dextral fracture segment stretching from Storihver to Baejarfjall (Khodayar
et al., 2015). In fact, this WNW weak zone is also responsible for the dextral shift
of Peistareykir fissure swarm. Hence, the northerly central pull-apart structures
and faults on each side of the WNW structure are not the same (Fig. 2c).

e The strike and motions of the six fracture sets at Peistareykir and surroundings
are compatible with the spreading direction of N105°E identified by DeMets et
al. (2010) (Fig. 2b). They are also identical to the fracture sets identified from
regional earthquakes in the TFZ (Fig. 1b) or locally around the geothermal field
(Figs. 3a to 3d), and seen on televiewer image logs at depth in at least one well in
the middle of the Peistareykir fissure swarm (Figs. 3f to 3g).

¢ Locally and above the geothermal reservoir, the Riedel shears control the location
and distribution of the alteration and gases (Figs. 4a to 4c). Regionally, the
influence of the rift and transform zone fracture sets is also obvious in the
aeromagnetic structures and gravity anomalies (Figs. 4d and 4e).
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e The resistivity structures display striking en échelon arrangements indicative of
dextral and sinistral motions along the WNW to NW/NNW, NNE, and ENE and
Riedel shears almost at the same locations as the surface mapping indicate
fractures of same strikes and motions. Only locally the resistivity structures
reflect the influence of rift-parallel northerly lineaments (Khodayar et al., 2015).

e More importantly, the tectonic lineaments controlling the resistivity structures
undergo a gradual clockwise rotation, up to 40°E, from 1000 to 4000 m b.s.1. (Figs.
5a and 5b), an anti-clock rotation of 4° to 16° W at 5000 and 6000 m b.s.l. (Fig. 5c),
and again a clockwise rotation of 2° to 14° E at 8000 m b.s.1. (Fig. 5d). Riedel shears
dominate the upper 6000 m in the crust, but at 8000 m b.s.1., few N-S, E-W, WNW
and NNW lineaments equally control the tectonic configuration. The E-W
lineaments are the deepest set of fracture appearing from 4000 m b.s.1., which
explains why E-W fractures are so uncommon at the surface.

e The geometrical configuration of the resistivity structures reflects the strike-
range of the fractures emerging from all other data (Fig. 5e). As a result of the
rotation of the resistivity structures, the depths at which individual fracture sets
seem most common appear to be of the outmost importance for drilling (Fig. 5f).

The results of Phases 1 and 2 are a major input in the analysis of Phase 3 since it relies
heavily on them.

3 Previous drilling targets at Peistareykir

Before proceeding to a new structural analysis of borehole data, results of previous
choices of drilling targets as well as the outcome of the drillings at Peistareykir are
discussed.

The 10 deep high-temperature wells at Peistareykir were drilled over a period of 11 years
(2002 to 2012). From early stages of exploration and drilling (PG-1) up to the last well
(PG-9), the drilling targets have been chosen based on surface alteration or chemical
evidence, TEM-MT model, but most importantly on the northerly fractures of the rift
(e.g., Gudmundsson et al., 2008; Mortensen, 2012). The exception to the northerly
structural targets is the highly altered NW Tjarnaras Fault (Fig. 6a), which appears as an
isolated structure unrelated to the rift.

The depth of the wells at Peistareykir range from 1627m to 2659 m (TVD), thus reflecting
the status of fracturing in the uppermost 2-2.5 km in the crust. We extracted from all
borehole data available the indications of fracturing (Figs. 6b to 6d), be it ample
alteration, mineral veins or intrusions, along with the depth ranges of feeders
(Guomundsson et al., 2002; Gudmundsson et al., 2004; Poérarinsson et al., 2006; Richter
et al., 2007; Blischke et al., 2007; Ingimarsdottir et al., 2009; Arnadéttir et al., 2009;
Arnadottir et al., 2011; Nielsson et al., 2011; Blischke and Arnadéttir, 2012; Mortensen et
al., 2013). Two points appear from the analysis of borehole data:

e The feeders are considered to be associated mostly with intrusions, which can be
sills but also dykes (i.e., fractures) at depth. A portion of the feeders, however, is
not associated with intrusions in which case they could likely be associated with
permeable faults.
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e Intervals of secondary fractures such as broken rock are frequently reported in
all wells. They are either in association with mineral veins or alteration, i.e., more
typical of faulting rather than intrusions. From the analysis of borehole data it
appears that the fractured intervals at depth are much more frequent than the
number of the northerly faults mapped at Peistareykir, which were used as
drilling targets. As a matter of fact, even a limited 300 m section logged with
televiewer (1498-1773 m) in well PG-8 shows that the number of faults and the
variety of strikes found at depth are more than those suspected from previous
structural maps (Figs. 3a and 6a). Therefore, a re-interpretation of selected bore-
hole data using our structural map is attempted below, as results could be
rewarding.

4 New structural analysis of borehole data

For our structural analysis of borehole data, we used two sets of data from existing wells
and interpret them using our structural map. One set is the feeders, and the other the
formation temperatures recorded in all 10 Peistareykir wells.

4.1 Feeders and fractures in existing wells

The summary of data that we prepared for the structural analysis of feeders and
fractures is presented on Table 1. In order to compare which of our suggested fractures
on the maps could coincide with the feeders at depth, we projected the point of
intersection of the feeders in the wells onto the surface and along the well paths, and
estimated their distances from well head. Respecting the dip direction of the fractures,
we also calculated which structures surrounding individual wells could intersect the
depths at which individual feeders are found in each well. The distance of those selected
fractures from well heads is also reported on Table 1, except for vertical wells, where the
depths of the feeders remain as points at the well heads. Finally, along with the strikes
of the fractures, we also show the best dip values of the permeable fractures if they are
to coincide with the specific depths of the feeders in each well.
Figures 7a, 7b, and 8a show the best permeable fractures matching the feeders of wells
as grouped in three areas. On those figures, the circles representing the feeder and the
matching fractures are shown in the same colour. About 5 faults could potentially match
the feeders of PG-8 (Fig. 7a), 11 fractures the feeders of PG-1, PG-5, PG-5b, PG-2, and
PG-4 (Fig. 7b), 12 fractures and one dyke the feeders of PG-3, PG-7, PG-6 and PG-9 (Fig.
8a). In many cases, however, more than one set of potential permeable fractures could
match an individual feeder, in which case those fractures are marked as and/or on maps.
A summary of all fractures and feeders is reported on figures 8b and the fractures
numbered on figure 9a. The fault geometries, dips, and segmentations of these fractures
and how they match the feeders are reported on figures 9b to 9m and 10a to 10n.
This structural analysis reveals four features regarding the potential permeable
fractures:
e Strikes: The most frequent permeable fracture sets are the ENE and then
northerly. However, in the group of possible permeable fractures, the northerly
rift-parallel fractures are as frequent as the ENE sinistral and WNW dextral
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oblique-slip Riedel shears of the transform zone (Fig. 8b). To reiterate, the
existence and importance of the ENE fractures have been demonstrated both in
our structural analysis of PG-8 and in the televiewer data of that well (Fig. 8a).

e Dips: All suggested permeable fractures match the corresponding feeders if those
fractures dip > 80° (Table 1, Figs. 9 and 10). The dips seem to remain as such,
regardless of the depth at which the feeders are found in the wells. These dip
values are important since they indicate steeply-dipping fracture planes, which
can be easily missed if their dip values are unaccounted for during drilling.

o Segmentation: Even with steep dips, the fracture planes must be segmented at
depth in order to match the depths of specific feeders (Figs. 9b to 9m, 10b to 10n).
This is not surprising since segmentation is already apparent from their surface
geometries on all maps. Attempts were made to find the best structural matches
for the feeders, respecting the dip value, dip direction, depth and the geometry
of the fractures. However, the segmentations shown on figures are only
indicative of fracture geometry since the exact number of segments along
individual fracture at depth is in fact unknown.

e Opposite dip directions: As it appears from the surface, a fracture can consist of
several segments along its trace. Due to their steep dips, fracture planes can
present opposite dip directions. It is estimated that these features are shallow in
the crust as the fractures coalesce into a single plane at greater crustal depths.

4.2 Formation temperature

The surface alteration at Peistareykir and immediate surroundings (Fig. 11a) should
somewhat be indicative of areas with elevated temperatures at depths. However, the
analysis of formation temperatures indicates other configurations (Figs. 11b to 11e).
The formation temperatures of the 10 exploration/production wells fall clearly into three
groups Figure 11b:
e Group (1) consisting of wells PG-2, PG-5, PG-5b, and PG-7: In this group, the
temperature is inverted below 150-400 m b.s.1 (TVD). The deepest of these wells,
i.e., PG-5b, recovers to the boiling curve at below 2000 m b.s.1. (TVD).

e Group (2) or wells PG-1, PG-3, PG-4, PG-6 and PG-9: In this group, the
temperature follows the boiling curve without any inversion.
e Group (3) or PG-8: This well attains a maximum of 210°C at 150 m b.s.l. (TVD),

but is inverted from that depth down to the bottom of the well where the
temperature is 110°C at 1850 m b.s.1 (TVD) (ISOR database).

Alteration minerals found in the wells are generally in good accordance with the
formation temperature except for well PG-8 where the alteration minerals indicate a
former temperature of 250°C near the bottom of the well (Nielsson et al., 2011).

On figure 11c, the wells are coloured according to the group to which they belong. As
each group occupies a specific area on the map, an extrapolation is made to identify
larger areas that could be covered by the formation temperature of individual group.
Figure 11d shows that the central part of Peistareykir could fall under Group (2), while
the areas on either sides of it correspond to Group (1).
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The distribution of Group (2) can be interpreted as an up-flow zone in the central part of
Peistareykir, as it is the hottest and the well follows the boiling curve at depth. That of
Group (1) can be seen as hot at shallow depth and colder at greater depth, and explained
as outflow zones. Since Group (3) is located farthest from the centre of the reservoir, only
the tip of the outflow zone reaches as far as PG-8 to the west thus warming up only the
upper part of the well (Fig. 11e). The lower part of PG-8 is colder than the expected real
formation temperature of the area to the west. The bottom temperature of 110° C at 2000
m (TVD) corresponds to a thermal gradient of only 55° C/km. The existence of an up-
flow zone, not so far from our suggestion configuration, has been already pointed out
by Gislason et al. (1984) and Gudmundsson et al. (2008).

4.3 Structural provinces of formation temperatures

To assess whether there could be a structural control of formation temperatures, we
identified on temperature logs the depths at which the uppermost break in the formation
temperature occur (Figs. 12a and 12b). We then projected those depths to the surface
along the well paths (Fig. 12c). Finally, we attempted to find the best possible fractures
that cross those points and could explain the changes in the heat.

Two scenarios can be envisaged. One is considering only the rift-parallel faults, and the
other is a combination of rift and transform zones fracture sets. These are described
below:

e Only the rift-parallel faults are considered, as the northerly fractures have been
the favourite structural targets for drilling. The four best matches are numbered
as 1 to 4 on figure 12d. Of these, Faults 1 and 2 could be those that fall between
the outflow zone and the area of Group (3) where PG-8 is located. In that case,
this could be a boundary fault compartmentalising the area of Group (3) from the
reservoir, thus explaining the colder temperatures at depth in PG-8. Fault 3 could
separate the areas of Group (1) and (2) and cross the groups of wells sharply.
Fault 4 at Ketilfjall is the eastern boundary structure of the Peistareykir fissure
swarm. Since it dips to the west, it could potentially cross PG-7 at the depth
where the change in formation temperature occurs.

e Both the northerly rift-parallel fractures and the Riedel shears of the transform
zone are considered (Fig. 12e). Two of the 10 suggested structures are the same
northerly segments as in scenario one that could potentially separate Group (3)
from Groups (1) and (2). They are labelled as 1 and 2 here. The 8 other Riedel
shears, labelled as segments 3 to 10, are those that fit best with the changes in
formation temperatures, although the configuration of the formation
temperature is unknown farther away from the reservoir.

The Riedel shears labelled as 3, 7, 8 and 9 strike WNW. Segment 3 could dip to
the SW, similar to other WNW segments further to the north (Fig. 12e). Due to its
steep dip, this segment coincides with the point where the formation temperature
changes in PG-7 from the boiling curve (shallower up-flow zone from the
reservoir) to cooler temperature at depth (Figs. 11e, 12b and 12e). The WNW
segment 7 acts as the best boundary between the up-flow zone and the cooler
formation temperatures of Groups (1) and (2). Segment 8 is highlighted since it
forms with segment 7 the major dextral oblique-slip fault on which the eruption
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of Storihver as well as the changes in alteration and possibly the formation
temperature occur. The role of segment 9 in the geothermal reservoir is unknown
because of lack of data around this segment. But if the boundary of Group (1)
lies, as shown, to the southwest of PG-2, then this WNW segment is the best
candidate. Of the three other ENE structures, segment 4 is the best match to
divide the Groups (1) and (2) crossing right between PG-5/PG-5b and PG-1/PG-
4. It could also be the boundary of the up-flow zone to the east. Segment 5 limit
the up-flow zone and outflow zone to the west/northwest. The point of change
in formation temperature in PG-8 could be on the WNW segment 6 (found
strongly in the televiewer data), as much as on the NW segment 10 (Fig. 12e).

The favourable structures of each scenario, however, must be considered taking into
account the regional geological context that controls the geothermal processes. If the
suggested structures are interpreted in view of the shift at Peistareykir, it appears clearly
that the northerly structures 1, 3, and 4 to the north (Fig. 13a) do not cross the WNW
splay segment of the dextral strike-slip Storihver-Baejarfjall Fault and, therefore, segment
2 to the south is not their continuation. It is thus unlikely that the northerly segments
divide the wells of Group (1) from Group (2) and play a significant role in the changes
in the formation temperatures there. On the other hand, the ENE and WNW Riedel
shears seem better matching with the shift of Peistareykir as some of the suggested
WNW segments are the same as the segments of the Stérihver-Baejarfjall Fault (Fig. 13b).
Additionally, the ENE segments seem to better compartmentalise the provinces in the
formation temperatures. It is noticeable that the Riedel shears suggested in scenario 2,
are identical to those controlling the feeders, and in a few cases they are the same
segments.

The analysis of formation temperatures and the correlation with the feeders supports the
fact that the Riedel shears of the transform zone play a critical role in fluid flow and
geothermal processes altogether.

5 Multidisciplinary data correlation and modelling

In the following chapters, we compile all the results from the analysis of various datasets
obtained during Phases 1, 2 and 3. This compilation gives an overview of the most active
structures in the geological processes leading to geothermal activity. They are then used
as the basis for suggesting the structural targets for drilling.

5.1 Correlation of borehole data with results of Phases 1 and 2

A number of structures emerge in the following parameters, which do not include the
resistivity data (Fig. 14a):

e Formation temperature
e Feeders

e Surface alteration

e Earthquakes

e Gases

e Televiewer image logs.
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The structures consist of major boundaries and, comparatively, secondary fractures.
Some of the structures appear only in one set of data, but others are common to a series
of processes. Despite their importance in regional tectonic, the two fault segments that
act as the eastern boundary of the Peistareykir fissure swarm show up in few data sets.
As an example, the northerly fault of Ketilfjall appears in formation temperatures and
acts as the boundary of the alteration block, the adjacent northerly dyke segments play
a potential role among feeders in PG-7, but the Bondholl Fault appears only controlling
a portion of the alteration block (Figs. 14a and 14b).

Other northerly normal and major NNE sinistral oblique-slip faults appear in formation
temperatures, earthquakes, gases, and the alteration block to the west and southwest of
Beejarfjall. However, most of the major structural boundaries are the Riedel shears,
including the NW striking Tjarnaras Fault. They control the feeders, the earthquakes,
gases and bounding the alteration block at the surface. A series of ENE fractures
stretching from the southern part of Tjarnaras Fault to the north of the crater in Baejarfjall
appear also among these same four datasets. Two main WNW dextral oblique-slip
structures, i.e., the Storihver-Beejarfjall Fault and the fault between Tjarnaras and
Ketilfjall appear in all dataset except the televiewer data.

The comparatively, “minor structures” striking ENE form a wide fault zone at PG-8
where at least 3 parallel faults are responsible for the broken zones and permeability
associated with major feeders in that well. Potentially, a NW fault parallel to Tjarnaras
could also play a role in that well, as well as in formation temperature (Fig. 14a). Other
Riedel shears and a few short northerly segments, appear among one to two datasets
(Fig. 14a).

The role of the major boundaries and secondary structures pops up better by compiling
the outline of surface alteration, formation temperature, and the totality of the fracture
pattern described above (Fig. 14b).

This present analysis reflects that the Riedel shears and the northerly rift-parallel
fractures play an equal role in the surface and sub-surface geological processes. Their
interaction leads to the compartmentalisation that appears in the configuration of the
geothermal field in the upper 2 km crustal depth.

5.2 Further correlation with resistivity

The last data set to be compared in more detail with the above results is the tectonic
control of the resistivity structures. For that correlation, we reported the potential
structures that appeared controlling the resistivity structures at various depths, as they
were analysed in Phase 2 (Khodayar et al., 2015).

The depth of the wells is within the uppermost 3 km of the crust. Therefore, we correlate
the structures that match with the resistivity in the upper 5 km in the crust since the
secondary fractures associated with the main structures between 3 and 5 km could still
be present upwards in the shallower crustal depths (Fig. 5f) and be met during drilling.

Due to the rotation of the fractures controlling the resistivity structures at various
depths, we correlate the lineations controlling the resistivity anomalies and our
structural pattern at each individual depth. Figures 15a, 16a, 17a, 18a, 19a, 20a, 21a and
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22a show the lineations controlling the resistivity structures, respectively, at the depths
of 500 m, 1000 m, 1500 m, 2000 m, 2500 m, 3000 m, 4000 m, and 5000 m b.s.l. The lineations
are directly reported on the structural map that reflects the six other datasets analysed
above (Fig. 14a). On those figures, the individual fractures that match each lineation are
numbered separately in each crustal depth. For clarity, only the lineations from
resistivity and their counterparts from the analysis of other datasets are reported on
figures 15b, 16b, 17b, 18b, 19b, 20b, 21b and 22b.

With all uncertainties when large sets of data are compared, a relatively good correlation
appears between the lineation controlling the resistivity structures and the fractures
observed in the six other data sets. In some cases, the Riedel shears and northerly
fractures are exactly the same as the lineations seen in resistivity. In other cases, the
lineations from resistivity fill the gap between segments that were already identified
through formation temperatures, feeders, alteration block, earthquakes, gases and
fractures identified on televiewer images.

The multidisciplinary data correlation with resistivity shows the same tectonic pattern
as in other data sets, i.e., that the fracture sets of rift and transform zones together shape
the geological processes at surface and depth.

5.3 Comprehensive model of Peistareykir geothermal field

The critical structures controlling the alteration block, formation temperatures, and all
secondary permeable fractures are reported on a single map (Map 1a). Also shown are
the lineations seen in resistivity. As that single model is to reflect the totality of the critical
structures, the lineations controlling the resistivity structures are combined together
regardless of their depths, and are all reported on the same map. The thickness of the
blue lines summarises the segments of a particular weak zone that appeared at various
depth intervals in the resistivity data.

This data compilation reflects a coherent structural model where the Riedel shears of the
transform zones and the northerly rift-parallel fractures play a role in any process and
at any depth.

The major boundaries stemming from this model are the boundaries of the alteration
block and formation temperatures, not least the Storihver-Beejarfjall Fault where the
splay segment of that fault is the most active segment above the reservoir (Map 1a).
These boundaries are all Riedel shears of the transform zones where the ENE sinistral
oblique-slip, the WNW and NW dextral oblique-slip faults dominate. These Riedel
shears, along with a few of the northerly fractures are responsible for a complex
structural compartmentalisation of the geothermal field. The secondary fractures of the
same sets are the favourable structures controlling various parameters of the geothermal
fractured reservoir.

As indicated from the analysis of resistivity, the WNW set is most frequent in the upper
2 km crustal depth, and again from 5 to 8 km depth. The ENE and NNW sets are more
frequent between 2.5 and 5 km depths (Fig. 5f). Although the main weak zones of each
set appear in a favourite depth, some fracture segments belonging to all sets could be
secondarily spread throughout the upper 8 km crustal depths.
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6 Potential drilling targets

In order to suggest new potential drilling targets, we considered in more detail several
parameters such as (Map 1a to 1h):

e Resistivity anomalies

e Alteration block and formation temperatures
e Stress field

e Productivity index

e Fault geometry

6.1 Earthquakes of 2014-2015

While Phase 3 of the multidisciplinary structural analysis of Peistareykir was ongoing,
new earthquake data were collected by ISOR for Landsvirkjun from late 2014 to 2015.
The main bulk of these events is located to the west and northwest of the biggest crater
in Beejarfjall. As the earthquake data are not fully processed in time to be analysed and
correlated from the beginning with all other data in our investigation, the 20142015
earthquakes are thus not included here.

However, an observation can be made. The last natural micro-earthquakes near the
geothermal reservoir occurred between 1993 and 2011, and were located on the western
slope of Baejarfjall (Hjaltadottir and Vogfjord, 2011). The considerable 2014-2015 micro-
earthquakes activity recorded by the [SOR-Landsvirkjun seismic network is farther to
the east. Most of these events are to the west and northwest of the biggest crater of
Bajarfjall, and near the path of PG-4. From October 2014 to June 2015, all wells at
Peistareykir, except PG-2, PG-5, and PG-8, were discharged (Juliusson, 2015). It is,
therefore, unclear how many of these earthquakes are related to the discharge and
testing of geothermal wells, and how many of them result indeed from the natural
release of the stress accumulated in the crust. It is likely that when fully processed, the
fracture pattern suggested from our structural analysis appears also in the seismic
lineations and fault plane solutions of the 2014-2015 events, and that the earthquakes
appear mostly triggered by geothermal operation.

6.2 Resistivity anomalies surrounding the reservoir

We selected 5 resistivity cross-sections along NS (Map 1b) and EW lines (Map 1c) to
check where the most obvious resistivity anomalies cross the reservoir and the targeted
areas for drilling.

As their locations on the structural model of Peistareykir show, the anomalies (A), (D),
and the northern part of (B) are beyond the main investigated area, where we did the
least structural analysis due to low data density. Anomaly (C) to the west covers a part
of the alteration block and the Group (1) wells. The southern part of anomaly (B) extends
into the investigated area and coincides with the up-flow zone.

Of the resistivity anomalies along the EW lines, anomaly (H) and only a part of
anomalies (E) and (F) coincide with parts of the alteration block and with some of the
structural compartments seen in formation temperatures. Note that (F) and (H) are
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sections through the same resistivity anomaly. Almost half of these anomalies fall also
outside of the reservoir area in regions where other data density is low.

Therefore, in our suggestions of structural targets, we focus mostly on areas that cover
both the resistivity anomalies and our thorough structural model.

6.3 Reservoir parameters, open fractures, and stress fields

The fracture sets that play a critical role in the compartmentalisation of the formation
temperatures, and create permeability for the feeders are mostly the same as bounding
the alteration block at the surface (Map 1d). These fractures are a combination of rift and
transform structures. They are dominantly the ENE sinistral and the WNW dextral
oblique-slip faults, including the splay segments of the Stérihver-Bajarfjall Fault
stretching to the geothermal reservoir. Furthermore, a few NW dextral oblique-slip
segments, particularly the Tjarnards Fault and the segment to its west are the most
important structures. The northerly set consists of shorter segments, however.

The main boundaries represented on Map 1d could, however, change if more borehole
data become available beyond the alteration block.

The fractures compartmentalising the reservoir are all open fractures. The rift-parallel
fractures are by nature extensional structures, but the Riedel shears are also open since
they have a dip-slip component.

The fact that all fracture sets are open is supported also by the regional and local stress
fields at and within the rift and transforms plate boundaries (Maps 1le). Although the
overall spreading direction is at N105°E (DeMets et al. (2010), in more details, fluctu-
ations are suggested across the rift and transform segments in North Iceland and
offshore (Map 1e). The spreading direction is nearly N102°E near the rift segments but
is oriented ~ N80° E across the TFZ but the total displacement is broken up in transversal
and lateral displacements resulting in strike and dip-slip motion of the transform fault
segments (Garcia et al.,, 2002). The field structural analysis of kinematic indicators
between the Husavik-Flatey Fault and Dalvik Lineament shows complex sets of stress
fields to be responsible for normal and strike-slip faulting (Homberg et al., 2010).
According to this analysis, a large area to the western part of the transform zone is
subject to severe fluctuations in the direction of SHmax (Map 1le), resulting in all fracture
sets being potentially open. That analysis, however, does not take into account block
rotation.

beistareykir is farther east compared to the areas under structural investigations by
Garcia et al. (2002) and Homberg et al. (2010). As the geothermal field and its sur-
roundings are also between the Husavik-Flatey Fault and Dalvik Lineament, the same
sets of stress fields as the western part of the transform zone are likely applicable to the
fracture sets of Peistareykir.

The production capacity of wells at Peistareykir, as newly estimated by Juliusson (2015)
(Table 2), is reported and combined with the selected open fractures relevant to
geothermal activity (Map 1f). Wells PG-2 and PG-8 are not producers. The wells PG-04
and PG-5B are with the highest production capacities, PG-1, PG-3, PG-6 with medium,
and PG-7 and PG-9 have the lowest capacities of producing wells. From these
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distributions, the best production capacity appears to the central and possibly southern
part of the reservoir, bounded by the two WNW segments that form the splay of the
Stérihver-Baejarfjall Fault. It is unknown, however, if the production capacities are
controlled by faulting alone, or by a combination of faulting and natures of displaced
rocks where secondary minerals have not yet filled the pores and fractures.

6.4 Selected drilling targets

The ultimate goal of our three multidisciplinary phases of structural analyses has been
to provide Landsvirkjun with an updated overview of the tectonic controlling the
geothermal activity along with targets for drilling. Based on all results presented here,
we suggest two types of drilling targets: Areas and structures.

e Areas. We identified five areas and ranked them in order of priority and
according to the purpose of drilling (Fig. 23a). These areas are bounded by
relevant tectonic boundaries and secondary structures. Area (A) is the most
promising zone to be drilled as that area coincides with the up-flow zone from
the reservoir. Drilling in that area is thus on the safe side and should provide the
energy sought for the first stage of the power plant. Areas (B), (C), (D) and (E)
are suggested as exploration areas where new wells would provide additional
information on the size of the reservoir and the up-flow zone, as well as the
permeability at depth. Of the exploration areas, areas (B) and (C) are with some
basic information (i.e., resistivity and structural pattern), but both are outside of
the alteration block with little gas measurements for hints on host fractures.
Areas (D) and (E) are with least data and are thus riskier. However, drilling into
the four zones should be equally important as Landsvirkjun may need to expand
its operation beyond the limited area drilled up to the present.

e Structural targets. Within each of the five areas, we highlighted the favourable
potential structural targets, which stem from our multidisciplinary structural
analyses. These structural targets are shown on figure 23b, and are: (a) Fault
intersections, which would provide the best permeability; (b) A few WNW, ENE
and northerly segments where drilling could be carried out along the fracture
trace. The majority of the structural targets has not been intersected by previous
drillings at Peistareykir.

Finally, when designing the drill paths, particular attention must be paid to fault
geometries, segmentations, and the dip of the fracture planes. Although all fracture sets
could be potentially open, due to their steep dip and segmentations, the structural target
may not be reached by drilling at the intended location and depth (Maps 1g and 1h).

7 Summary and concluding remarks

In this last phase of our structural analysis, we: (a) Evaluated the previous drilling
targets; (b) Examined the permeable fractures that could potentially be the paths for
feeders found in wells; (c) Investigated the formation temperatures and their possible
structural control; (d) Correlated results of all surface and sub-surface data obtained
during the three phases; (e) Suggested new drillings targets at Peistareykir.
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The highlights of our results are:

Except for chemical and alteration indications, a few northerly fractures have
been the favourable choice of structural targets for the drilling of wells PG-1 to
PG-9. However, the re-evaluation of borehole data indicates that there are more
broken areas at depth associated with fracturing and intrusions than the few
northerly fractures at and surrounding Beejarfjall.

The analysis of feeders with our structural pattern of rift and transform zones
shows that the dextral WNW and NW, as well as the sinistral ENE oblique-slip
faults are the main permeable fractures along with a few of the northerly shorter
segments.

The structural boundaries controlling the alteration block at the surface, along
with the associated parallel fractures through which gases and feeders seep are
the same sets as those that control the formation temperatures and shape the
boundaries of resistivity anomalies above the geothermal reservoir.

Among the main boundaries, the splay section of the WNW Storihver-Beejarfjall
dextral fault enters the reservoir. Due to the dextral shift along this fault that
displaces the entire Peistareykir fissure swarm in the middle, the northerly short
segments to the north and south of this fault are not the same.

The analysis of the varied surface and sub-surface data shows that the Riedel
shears of the transform zone play an important role in the geological processes
controlling the geothermal activity.

Using the combined structural pattern of rift and transform zone, we suggest
drilling targets in terms of areas and structures. Of the 5 areas selected as drilling
targets, the central zone mostly covers the up-flow zone of the reservoir. That
zone is the safest area for additional production wells. The other four areas
surrounding the central zone are exploration areas, which should provide further
information about the extent of the reservoir and its characteristics. Within each
of these five areas, a number of permeable structural targets are suggested that
could tap into the best reservoir temperatures. These structural targets are either
fracture intersections between Riedel shears and/or northerly rift-parallel
fractures, or fracture traces. They are, however, mostly the Riedel shears of the
transform zone.

As the earthquakes of 2014-2015 coincide in time mostly with the period when
the wells in Peistareykir were discharged, it is likely that many of those events
are a response to the geothermal operation rather than reflecting the natural
release of stress along faults. These events appear to have occurred to the west
and northwest of the biggest crater in Baejarfjall, near the path of PG-4. Their
location coincides with a large part of the main target area for drilling and a
number of selected fractures there, but also with one of the areas selected for
exploration drilling.
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Three points should be emphasised:

1.

The data regarding the micro-earthquakes of 2014-2015 recorded by the {SOR -
Landsvirkjun seismic network were not fully processed at the time of our
investigations in order to be included in our structural analyses and be correlated
with all other data sets. It is recommended that a side project is allocated to
correlate the seismic lineations and fault plane solutions emerging from the data
processing of the 2014-2015 earthquakes with the results of our structural
analysis, as it is likely that our suggested fracture pattern of rift and transform
zones emerges also among the fully processed earthquake data.

When designing for new well paths, it is important to consider in details the
features of the fractures. As the fractures are steeply-dipping and segmented, the
drilling may not intersect the intended structure if their features are not taken
into account accurately. Therefore, further work is required to evaluate the
fractures and the drill paths.

Finally, a part of our structural analysis during the three phases of the
multidisciplinary investigations uses available data up to date. If the base data
regarding the formation temperatures, borehole data, and gas measurements
change, our structural model of the Peistareykir should be revised.
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Figure 1. Regional geological context. (a) Location of Peistareykir geothermal field at the junction of Northern Rift Zone and Tjornes Fracture Zone. (b) Compilation of tectonic elements of the rift and the transform zones plate boundaries in North
Iceland. (c) Geological map by Seemundsson et al. (2012b) emphasizing rift parallel fractures.
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Figure 2. Recall of main the results from phases 1 and 2 (1). Main results regarding the fracture pattern. (a) Fracture pattern with highlights of the weakest zones along each of the six sets, the rose diagram of fracture frequency and the fracture
motions. (b) Statistical analysis of the fracture population in terms of rock ages. (c) Number of normal faults on each side of the WNW Stdrihver-Baejarfjall Fault and the shift of the DPeistareykir fissure swarm in a dextral motion along this

fault.
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Figure 3. Recall of some results from Phases 1 and 2 (2). (a) The relocated earthquakes (M -0.6 to 3.2) from 1993 to 2011 (Hjaltadéttir and Vogfjord, 2011), and the centre of uplift in Peistareykir
map. (b) and (c) Four clusters of earthquakes along with two options for the interpretation of the strikes and motions of the corresponding faults (Hjaltadéttir and Vogfjord, 2011). (d) and (e) Correlation of our fracture pattern with relocated
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Figure 4. Recall of some results from Phases 1 and 2 (3): (a), (b) and (c) Respectively, correlation of the structural pattern with tectonic lineations emerging from the distribution of gases, the alteration block, and the structures common to alteration

and gases distribution. (d) and (e) Respectively, correlation of the structural pattern with the aeromagnetic and Bouger gravity anomaly maps obtained by Gislason et al. (1984).
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Figure 7. Basic parameters used for the structural analysis of fractures and feeders. The data about the wells and the depth of the feeders are from the borehole reports (ISOR database), but the values of production capacity are from Jiiliusson

(2015).
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Figure 18. Compilation of the multidisciplinary structural data and lineations controlling the resistivity anomalies at 1500 m b.s.l. (a) The lineations that seem controlling the resistivity anomalies are shown in blue, and superimposed on the
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Figure 23. Compilation of the multidisciplinary structural data and lineations controlling the resistivity anomalies at 5000 m b.s.l. (a) The lineations that seem controlling the resistivity anomalies are shown in blue, and superimposed on the
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