Aurburtarmælingar í Jökulkvísl og Ytri-Bláfellsá árin 2017 og 2018
Skýrsla LV nr: LV-2018-104, ORK-1802 Dags: Desember 2018

Fjöldi síðna: 43 Upplag: 15 Dreifing: □ Opin □ Birt á vef □ Takmörkuð til

Titill: Aurburðarmælingar í Jökulkvísl og Ytri-Bláfellsá árin 2017 og 2018

Höfundar / fyrirtæki
Esther Hlíðar Jensen, Svava Björk Þorláksdóttir, Snorri Zóphóníasson, Gunnar Sigurðsson / Vedurstofa Íslands

Verkefnisstjóri: Helgi Jóhannesson verkefnisstjóri Landsvirkjunar, Þórhallur Halldórsson verkefnisstjóri Orkusölunar ehf. og Jórunn Harðardóttir verkefnisstjóri Vedurstofu Íslands

Unnið fyrir: Landsvirkjun og Orkusöluna ehf.

Samvinnuaðilar:

Lykilorð: Hólmsá, Jökulkvísl (V2281), Þaul (vhm 577), Framjólf/Hólmsárfoss (vhm 231/vhm 468), Ytri-Bláfellsá (V4073), sýnataka, svifaurslykill, skriðaurslykill, svifaursstyrkur, konstærðarmælingar, skriðaursframburður, heildarframburður.

ISBN nr:
Samþykki verkefnisstjóra
Landsvirkjunar

Samþykki verkefnisstjóra
Orkusölunar ehf.
Aurburðarmælingar í Jökulkvísl og Ytri–Bláfellsá árin 2017 og 2018

Höfundar:
Esther Hlíðar Jensen
Svava Björk Þorláksdóttir
Snorri Zóphónlasson
Gunnar Sigurðsson

Veðurstofa Íslands

Skýrsla VÍ-2018/018

Desember 2018
Efnisyfirlit

Myndaskrá ... 5
Töfluskrá .. 6
1 Inngangur ... 7
2 Mat á rennsli í Jökulkvísl .. 9
 2.1 Mælingar í Jökulkvísl og mat á rennsli 9
 2.2 Úrkoma á vatnasiði Jökulkvíslar 13
3 Aurburðarsýnataka og úrvinnsla 14
 3.1 Timasetning aurburðarsýna miðað við rennslí 15
 3.2 Svifaursýn ... 16
 3.2.1 Sýnataka og kornastærðargreining 16
 3.2.2 Svifaurslyklar .. 16
 3.3 Skriðaurssýn .. 17
 3.3.1 Sýnataka og kornastærðargreining 17
4 Niðurstöður aurburðarmælinga í Jökulkvísl 21
 4.1 Niðurstöður svifaursmæling 21
 4.1.1 Kornastærðargreining svifaurs 24
 4.1.2 Niðurstöður skriðaurssmælinga 26
 4.1.3 Kornastærðargreiningar skriðaurs 27
5 Samantekt .. 29
6 Heimildir .. 31
Viðauki I ... 33
Viðauki II ... 34

Myndaskrá

Mynd 1. Yfirlitskort af svæðinu með rennslismæli- og sýnatökustöðum 7
Mynd 2. Kort af vatnasiðum Hólmsár við Hólmsár closest og Þaula 8
Mynd 3. Dagsmeðalrennslí og gildandi rennslisyklar .. 9
Mynd 4. Samanburður á rennslí við þaula árið 2017 við fyrri ár 10
Mynd 5. Rennslí við Hólmsár closest, Þaula og reiknað rennslí við Jökulkvísl 11
Mynd 6 Reiknað dagsmeðalrennslí fyrir Jökulkvísl .. 12
Mynd 7. Samband milli rennslí við Þaula og Jökulkvíslar ... 12
Mynd 8. Ljósmyndir úr ferðum. ... 13
Mynd 9. Reiknað rennslí og hitastig fengið .. 14
Töfluskrá

Tafla 1. Rennslismælingar í Jökulkvísl 2017–2018.. 10
Tafla 2. Fjöldi og gerð aurburðarsýna .. 15
Tafla 3. Kornastærðarflokkar svifaurs... 16
Tafla 4. Fjöldi skriðaurssýna ásamt meðalframburði ... 18
Tafla 5. Samanburður stærða í mm og í φ-gildum.. 19
Tafla 6. Skýringar á tölfraeðilegum eiginleikum kornastærðargreiningar.......................... 20
Tafla 7. Niðurstöður kornastærðarmælinga á svifaursýnum.. 21
Tafla 8. Helstu einkenni svifaurslyklna. ... 22
Tafla 9. Samanburður á reikuðum svifaursframhverði .. 24
Tafla 10. Dreifing styrks eftir kornastærðum ... 25
Tafla 11. Helstu einkenni skriðaurslykils fyrir Jökulkvísl ... 27
Tafla 12. Svifaurs- og skriðaursframhverður á ári í Jökulkvísl.. 29
Tafla 13. Niðurstöður kornastærðargreininga skriðaurs.. 43
1 Inngangur

Vatnasvið Hólmsár við Þaula er 383 km². Myrdalsjökull þekur 94 km² af vatnasviðinu (24,6%) og Torfajökull 2 km² (0,5%). Vatnasvið Jökulkvíslar er 40,5 km² og Myrdalsjökull þekur um 23,5 km² þess eða 58% heildarvatnasviðsins (Mynd 2). Vatnasvið Ytri-Bláfellsár er 55,1 km² og vatnasvið Hólmsár við Hólmsárfoß er 224 km².

2 Mat á rennslí í Jökulkvísl

2.1 Mælingar í Jökulkvísl og mat á rennslí

Tafli 1. Rennslismælingar í Jökulkvísl 2017–2018.

<table>
<thead>
<tr>
<th>Dagur</th>
<th>Tími</th>
<th>Rennslismæling (m³/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017-07-12</td>
<td>11:00</td>
<td>6,66</td>
</tr>
<tr>
<td>2017-09-23</td>
<td>16:20</td>
<td>33,2</td>
</tr>
<tr>
<td>2017-09-24</td>
<td>13:30</td>
<td>15,2</td>
</tr>
<tr>
<td>2017-10-24</td>
<td>13:28</td>
<td>9,52</td>
</tr>
<tr>
<td>2018-11-16</td>
<td>19:00</td>
<td>9,83</td>
</tr>
<tr>
<td>2018-11-16</td>
<td>23:33</td>
<td>31,9</td>
</tr>
<tr>
<td>2018-11-17</td>
<td>08:29</td>
<td>46,2</td>
</tr>
</tbody>
</table>

Gerð var tilraun til að finna samband milli rennslis við Þaula og Jökulkvísl en við þá athugun kom í ljós að sambandið er tvískipt og þyfti að leggjast í frekari rennsóknir til að greina ástæðu þess (Mynd 7).
Mynd 6 Reiknað dagsmeðalrennsli fyrir Jökulkvísl (dökkgræn lína) ásamt lykluðu rennsli út frá mælingum kafara (fjólublá lína). Ljósgræna og bláa linan sýna rennsli við mælinn í Þaula (dmr577) og Hólmsárfoß (dmr468).

Mynd 7. Samband milli rennslis við Þaula og Jökulkvíslar.
Mæling í Jökulkvísl í atburðarferð 23.09.2017 - GS

Flóð í Jökulkvísl 23. september 2017 - GS

Tilraunir voru gerðar með renslismælingu með litarefni í Ytri-Bláfellsá þann 11.október 2017 - NFR

Ytri-Bláfellsá mynd tekin 11.október 2017 - NFR

Í Ytri-Bláfellsá var gerð tilraun með litarefni við mælingu á rensli þann 11. október 2017 (Mynd 8). Meðaltal nokkurra litarefnismælinga og einnar saltmælingar gáfu 17,5 m³/s rensli á meðan renslismæling með straumsjá skilaði 17,8 m³/s. Samtímis var rensli Hólmsár við Hólmsárfoss um 54 m³/s, við Þaula 72 m³/s og reiknað rensli Jökulkvislar 4,6 m³/s.

2.2 Úrkoma á vatnasvöði Jökulkvislar

Dagsmeðalúrkoma á vatnasvöði Jökulkvislar var tekin saman fyrir árið 2017 skv. Harmonie líkani (Mynd 9). Rensli er í góðu samræmi við úrkomu við hitastig yfir frostmarki á svæðinu. Óvenju mikil úrkoma um vorið hefur valdið vortoppi í rensli.
3 Aurburðarsýnataka og úrvinsla

Ferðum inn að Jökulkvísl var skipt upp í tvenns konar ferðir, annars vegar „hefðbundnar“ ferðir og hins vegar „atburðarferðir“. Hefðbundnar ferðir voru farnar í tengslum við aðrar ferðir en atburðarferðir voru eingöngu vegna sýnatöku í Jökulkvísl.

3.1 Tímasetning aurbøarsýna miðað við rennsli

![Mynd 10. Reiknað (svört lína) og mælt rennsli (rauð lína) Jökulkvislar, ásamt mældu rennsli við sýnatöku (bláir punktar). Y-ás sýnir rennsli í m³/s.](image)

<table>
<thead>
<tr>
<th>Dagsetning</th>
<th>Tegund ferðar</th>
<th>Fjöldi svifaurs-</th>
<th>Fjöldi skriðaurs-</th>
<th>Fjöldi greindra skriðauars-</th>
<th>Fjöldi eintoppa skriðauars-</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>sýna</td>
<td>sýna</td>
<td>sýna</td>
<td>sýna</td>
</tr>
<tr>
<td>2017-07-12</td>
<td>Hefðubundin</td>
<td>2</td>
<td>1</td>
<td>27</td>
<td>5</td>
</tr>
<tr>
<td>2017-09-23</td>
<td>Atburðarferð</td>
<td>3</td>
<td>1</td>
<td>18</td>
<td>6</td>
</tr>
<tr>
<td>2017-10-24</td>
<td>Hefðubundin</td>
<td>2</td>
<td>1</td>
<td>26</td>
<td>5</td>
</tr>
<tr>
<td>2018-11-16</td>
<td>Atburðarferð</td>
<td>2</td>
<td>1</td>
<td>25</td>
<td>6</td>
</tr>
<tr>
<td>2018-11-17</td>
<td>Atburðarferð</td>
<td>2</td>
<td>1</td>
<td>37</td>
<td>5</td>
</tr>
<tr>
<td>Alls aurbøarsýni</td>
<td>12</td>
<td>4</td>
<td>170</td>
<td>34</td>
<td>29</td>
</tr>
</tbody>
</table>

15
3.2 Svifaurssýni

3.2.1 Sýnataka og kornastærðargreining

Öll svifaurssýni úr Jökulkvísl á tímabilinu voru tekin með S49 sýnataka á þremur eða fleiri stöðum yfir þversniðið (svokölluð S1 sýni) (Svanur Pálsson & Guðmundur H. Vigfússon, 2000).

Svifaurssýni sem tekin voru á tímabilinu 2017–2018 voru kornastærðargreind á aurburðarstofu VI, en auk kornastærðar var mældur heildarstyrkur svifáurs og styrkur uppleystra efna (TDS). Eins og í fyrri svifaurssýnum var fingerðasti hluti sýnanna (<0,063 mm) kornastærðargreindur með setvogarmælingu en grófara efni með sigtun. Kornastærðarlinuritum sýnanna var skipt upp í fimm flokka til að einfalda úrvinnslu gagnanna og eru þeir síndir í töflu 5:

<table>
<thead>
<tr>
<th>Kornastærðarflokkur</th>
<th>Kornastærð (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sandur</td>
<td>>0,2</td>
</tr>
<tr>
<td>Grófmör</td>
<td>0,2–0,06</td>
</tr>
<tr>
<td>Finmör</td>
<td>0,06–0,02</td>
</tr>
<tr>
<td>Méla</td>
<td>0,02–0,002</td>
</tr>
<tr>
<td>Leir</td>
<td>< 0,002</td>
</tr>
</tbody>
</table>

3.2.2 Svifaurslyklar

Magn þess svifaurs sem berst fram á sýnatökustað á tilteknu tímabili er fundið út frá reynslusambandi milli svifaursframburðar og rennslis. Þetta reynslusamband er hér eftir kallað svifaurslykill. Lykillinn er á eftirfarandi formi þar sem q_s er svifaursframburður í kg/s, Q er rennsli í m3/s, en k og n eru aðhvarfsstuðlar, k hlutfallsstuðull og n veldisvisir:

$$q_s = k \times Q^n$$ (1)

Þegar gæði lykla eru metin þarf að vera efirtalin atriði í huga:

- Lyklar eru almennt því betri sem sýnin, sem þeir byggjast á, eru fleiri. Annars er hætt við, að sýnin séu ekki nægilega marktækt á úrtak. Samband rennslis og svifaurs er í rauninni töluvirt breytilegt, því að margar konor ytri skilyrði önnur en rennslis hafa áhrif á aurinn. Sýnin þurfa m.a. helst að dreifast sem jafnast yfir árið, sérstaklega þann hluta ársins sem framburður er mestur. Sýnin ættu varla að vera fjærri en sjó ef nota á þau til ályktunar, en þá þurfa skilyrðin sem talin eru hér að eftir að vera vel uppfylt.

- Best er að sýnin hafi verið tekn á breiðu rennslisbíl, helst allt frá því að vera nærri hæsta dagsmáðrennsli tímabilinsins sem lykillinn gildir fyrir, niður í nokkuð lágt rennsli. Ennfremur er æskilegt að sýnin dreifist sem jafnast á rennslis.

- Fylgnin þarf að vera sem hæst. Hún telst góð ef hún er 0,90 eða hærri, mjög góð ef hún er 0,95 eða hærri, en lêleg ef hún er undir 0,80.

- Lyklar með hærrí veldisvisi en 3 eru varasamir því þeim hættir til að gefa of mikinn aur við hárennslis og þar sem stuðlarnir hafa gagnverkið áhrif hvor á annan of líttin aur við lágrennslis. Algengt er að veldisvisirinn sé nálægt 2 í góðum lyklu.

Trúverðugir veldisvisar eru á bilinu 1,5–3.
• Óheppilegt er að einstakir mælipunktar skeri sig mjög úr, sérstaklega þegar lykillinn byggist á fáum sýnum. Slíkum punktum geti verið rétt að sleppa í sumum tilfellum.

Lyklarnir eru notaðir til að reikna svifaurinn fyrir hvern dag fyrir sig út frá meðalrennsli dagsins. Þannig á að vera unnt að reikna svifaur sem berst fram á einu ári eða nokkurra ára tímaði ef lyklarnir eru nægilega góðir og upplýsingar liggja fyrir um dagsmedalrennsli. Lyklarnir sem byggðir eru að sýnum frá öllum árstaðum eru kallaðir árslyklar. Ef sýnafjöldi leyfir er sýnum skipt niður í árstaði og reiknaðir sérstakir árstíðalyklar fyrir hvora eða hverja árstíð fyrir sig. Oft eru sumarsýni hlutfallslega fleiri en vetrarýni miðað við fjölda mánaða sem getur verið af ýmsum ástaðum t.d. verra aðgengi á vetrur. Þegar sumarrennsli er hlutfallslega án því að reikna svifaur sem berst fram á einu ári eða nokkurra ára tímaði ef lyklarnir eru nægilega góðir og upplýsingar liggja fyrir um dagsmedalrennsli. Hins vegar er rennsli og framburður vetraráðanna þá oft einsleitara en sumarmánaðanna og því ekki þörf á jafnmörkum sýnum til að lýsa tímaði.

Rofnæmi og rofmætti má lesa út úr stuðlum í jöfnu (1) (Morgan, 1995; Asselmann, 2000). Hátt gildi hlutfallsstuðulsins k bendir til að á vatnasvöldinu sé mikið veðrað efni, sem flyst auðveldlega og því talð um hátt rofnæmi. Hátt gildi veldisvisins n bendir til mikillar aukningar í rofmætti með auknu rennsli, þ.e. rofkraftur árinnar vex hratt. Hins vegar hafa stuðlarnir gagnverkandi áhrif hvor út annan og því er betra að skoða halla kúrfunna. Bröt kúrfur þ.e. lágt k og hátt n ættu að vera einkennandi fyrir vatnssíð med því náttúrulegumenti við lágt rennsli sem eykst miðið við auknu rennsli. Flót kúrfur ætti að einkenna vatnssíð fyrir sem auðrofíði efni er í vatnasvöldum, sem getur flust við nánar hvaða rennsli sem er (Asselmann, 2000). Þessi atriði eru eingöngu til viðmúðunar en skoða verður hvert vatnssíð og sýnatöku sérstaklega því önnur áhrif geta verið mikilvæg s.s. stíflumannvirki sem og náttúrulegar breytingar á vatnasvöldi.

3.3 Skríðaurssýni

3.3.1 Sýnatakaka og kornastærðargreining

Alls voru tekin 170 skríðaurssýni af brúnni yfir Jökulkvísl með vökvarifnu spili, tvö þeirra voru ekki notuð því pokinn yfirfylltist. Af 168 sýnum voru slóan 34 sýni kornastærðargreind á aurburförstofnu Veðurstofunnar en 29 þeirra voru eintoppa (Tafla 2) og verður nánar fylltuð um kornastærðargreiningu skríðaurssýna í kafla 4.1.4.

Skríðaurssýni voru tekin með Helley-Smith skríðaurssýnata. Sýnatakinn vegur um 48 kg og er með 3×3” (ca. 7.6×7.6 cm) sýnatökuopu og 3,22 stækkuorhlutfalli. Sýnatakinn var láttin síga niður á botn árinnar á ákveðnum stöðum og láttin sitja þar í vissan tíma. Timalengd sýnatakans við botn var háð rennsli og framburði og getur því verið breytileg milli sýnatökuumferða (Mynd 11). Þessi timalengd er breytileg í Jökulkvísl eða frá 3–180 sek. Fylgni milli rennsli og timalengdar er öfug þ.e. með hækkandi rennslí styttist timalengd sýnata við botn og sama á við um fylgni framburðar og timalengdar (Mynd 11). Reynt var að taka sýni á svipuðu lengdariði í þversniðinu í öllum sýnatökuferðum.

Tafla 4 sýnir dagsetningu sýnatöku, stöðvanúmer (staðsetning á þversniði), fjölda sýna ásamt niðurstöðu rennslismaelingar í sýnatökunni. Rennsli í sýnatökum var mjög breytilegt eða frá 6,66 m³/s og upp í 46,2 m³/s (Tafla 4). Rennslismaelingin sýnir hins vegar eingöngu augnabliksrennslis en ekki médalrennslis sýnatökunnar.

<table>
<thead>
<tr>
<th>Dagsetning</th>
<th>Stöðvar (m)</th>
<th>h-bakki</th>
<th>v-bakki</th>
<th>Timalengd við botn (s)</th>
<th>Médalframburður (g/s/m)</th>
<th>Rennslismaeling (m³/s)</th>
<th>Fjöldi sýna</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017-07-12</td>
<td>6,7,9,11,13,15</td>
<td>5,6</td>
<td>17,5</td>
<td>60</td>
<td>295</td>
<td>6,66</td>
<td>7</td>
</tr>
<tr>
<td>2017-07-12</td>
<td>7,9,11,13,15</td>
<td>5,6</td>
<td>17,5</td>
<td>120</td>
<td>93,3</td>
<td>6,66</td>
<td>5</td>
</tr>
<tr>
<td>2017-07-12</td>
<td>7,9,11,13,15</td>
<td>5,6</td>
<td>17,5</td>
<td>180</td>
<td>479</td>
<td>6,66</td>
<td>15</td>
</tr>
<tr>
<td>2017-09-23</td>
<td>7,9,11,13,15,16</td>
<td>5,6</td>
<td>17,5</td>
<td>3-5</td>
<td>114311</td>
<td>33,2</td>
<td>37</td>
</tr>
<tr>
<td>2017-09-24</td>
<td>7,9,11,13,15,16</td>
<td>5,6</td>
<td>17,5</td>
<td>3</td>
<td>80842</td>
<td>15,2</td>
<td>18</td>
</tr>
<tr>
<td>2017-10-24</td>
<td>7,9,11,13,15</td>
<td>5,6</td>
<td>17,5</td>
<td>180</td>
<td>919</td>
<td>9,52</td>
<td>26</td>
</tr>
<tr>
<td>2018-11-16</td>
<td>7,9,11,13,15,16</td>
<td>5,6</td>
<td>17,5</td>
<td>5</td>
<td>41094</td>
<td>9,38</td>
<td>18</td>
</tr>
<tr>
<td>2018-11-16</td>
<td>7,9,11,13,15,16</td>
<td>5,6</td>
<td>17,5</td>
<td>5</td>
<td>95302</td>
<td>31,9</td>
<td>18</td>
</tr>
<tr>
<td>2018-11-17</td>
<td>7,9,11,13,15,16</td>
<td>5,6</td>
<td>17,5</td>
<td>5</td>
<td>106552</td>
<td>46,2</td>
<td>24</td>
</tr>
</tbody>
</table>
Skipting í rennslisbil hér miðast við renslismælingar sem gerðar voru samhlíða sýnatöku en ekki meðalrennslí reiknað út frá vatnshæðarmælingum, eins og gert er í flestum tilvikum. Þetta kemur til af því að vatnshæðarmælingar hafa ekki staðið nógú lengi við Jökulkvísl til að hægt sé að reikna rennslistörfur og því ekki um samfellda rennslistörd að ræða með nægjarlegri upplausn (10 mínútna til klukktandargildi) til að byggja á meðalrennslí í sýnatöku.

Sýnum var m.a. skipt í flokka eftir tímalengd sýnataka við botn. Breytileiki á aurstyrk innan hverrar sýnatöku var mismikill en mestur var hann í atburðarferðunum. Rennslisblinn eru merkt á x-ás á mynd (1 til 9) og niðurstöður mælinga eru í töflu 4.

Skiðaurssýninn sem valin voru til kornastærðargreininga voru fyrst þurrkuð við 60°C áður en þau voru sigtuð í gegnum sigti með möskvastærð sem hljóp á 0,5 φ (phi). Til þess að einfalda tölffræðilega útreikninga á kornastærð skriðaurssins var φ-kvarðinn notaður, en φ-gildi eru reiknuð á eftirfarandi hátt (Boggs, 1995):

\[\phi = -\log_2(d) \]

þar sem \(d \) er þvermál korna í mm. Tafla 5 sýnir samanburð á stærðum í mm og stærðum í φ.

<table>
<thead>
<tr>
<th>mm</th>
<th>φ</th>
<th>U.W. heiti</th>
<th>mm</th>
<th>φ</th>
<th>U.W. heiti</th>
<th>mm</th>
<th>φ</th>
<th>U.W. heiti</th>
<th>mm</th>
<th>φ</th>
<th>U.W. heiti</th>
</tr>
</thead>
<tbody>
<tr>
<td>256</td>
<td>-8</td>
<td>Hnúllungar</td>
<td>11,2</td>
<td>-3,5</td>
<td>Meðalmöl</td>
<td>1,41</td>
<td>-0,5</td>
<td>Mjög grófur sandur</td>
<td>0,18</td>
<td>2,5</td>
<td>Fínspandur</td>
</tr>
<tr>
<td>64,0</td>
<td>-6</td>
<td>Steinar</td>
<td>8,00</td>
<td>-3</td>
<td></td>
<td>1,00</td>
<td>0</td>
<td></td>
<td>0,125</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>44,8</td>
<td>-5,5</td>
<td>Mjög grófmöl</td>
<td>5,66</td>
<td>-2,5</td>
<td>Fínspandur</td>
<td>0,71</td>
<td>0,5</td>
<td>Grófsandur</td>
<td>0,088</td>
<td>3,5</td>
<td></td>
</tr>
<tr>
<td>32,0</td>
<td>-5</td>
<td></td>
<td>4,00</td>
<td>-2</td>
<td></td>
<td>0,50</td>
<td>1</td>
<td></td>
<td>0,063</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>22,4</td>
<td>-4,5</td>
<td>Grófmöl</td>
<td>2,83</td>
<td>-1,5</td>
<td></td>
<td>0,35</td>
<td>1,5</td>
<td>Meðalsandur</td>
<td><0,063</td>
<td>>4</td>
<td></td>
</tr>
<tr>
<td>16,0</td>
<td>-4</td>
<td></td>
<td>2,00</td>
<td>-1</td>
<td></td>
<td>0,25</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tafla 5. Samanburður stærða í mm og í φ-gildum og heiti kornastærðarflokka samkvæmt Udden-Wentworth kvarða.

<table>
<thead>
<tr>
<th>Medaltalstærð</th>
<th>Aðgreining</th>
<th>Skakki</th>
<th>Ferilris</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\bar{x} = \frac{\sum f m}{n}$</td>
<td>$\sigma_\phi = \sqrt{\frac{\sum f (m - \bar{x})^2}{100}}$</td>
<td>$\bar{Sk}\phi = \frac{\sum f (m - \bar{x})^2}{100\sigma\phi^2}$</td>
<td>$K_\phi = \frac{\sum f (m_\phi - \bar{x})^2}{100\sigma_\phi^2}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aðgreining (σ_ϕ)</th>
<th>Skakki (\bar{Sk}_ϕ)</th>
<th>Ferilris (topplögun) (K_ϕ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mjög vel aðgreint <0,35</td>
<td>Mjög finn hali >+1,30</td>
<td>Mjög lágreist <1,70</td>
</tr>
<tr>
<td>Vel aðgreint 0,35−0,50</td>
<td>Finn hali +0,43 til +0,1,3</td>
<td>Lågreist 1,70−2,55</td>
</tr>
<tr>
<td>Í meðallagi vel aðgreint 0,50−0,70</td>
<td>Samhverft -0,43 til +0,43</td>
<td>Medalreist 2,55−3,70</td>
</tr>
<tr>
<td>Í meðallagi aðgreint 0,70−1,00</td>
<td>Grófur hali -0,43 til -0,1,3</td>
<td>Háreist 3,70−7,40</td>
</tr>
<tr>
<td>Illa aðgreint 1,00−2,00</td>
<td>Mjög grófur hali < -0,1,3</td>
<td>Mjög háreist >7,40</td>
</tr>
<tr>
<td>Mjög illa aðgreint 2,00−4,00</td>
<td>Mjög grófur hali</td>
<td></td>
</tr>
<tr>
<td>Sérlega illa aðgreint >4,00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4 Niðurstöður aurburdarmælinga í Jökulkvísl

4.1 Niðurstöður svifaursmæling

Vetrarlykillinn er nú gerður með 28 sýnum úr átta ferðum og hefur því með því breidd en áður. Sumarlykillinn er gerður með 22 sýnum og var lægsta rennsli í sýnatöku um 17% ofan við lægsta dagsmeðalrennsli.

Fjögur sýni voru tekin úr Ytri-Bláfellsá til samanburðar. Ekki var unnt að mæla rennsli samfara sýnatökunní og því er frambrúðar ópekkur. Styrkur sýnanna úr Ytri-Bláfellsá er um 70–90% hærri en styrkur sýna úr Jökulkvísl sömu daga (Tafla 7). Þótt ekki hafi verið hægt að reikna frambrúð Ytri-Bláfellsár má sjá að hún er talsvert vatnsmeiri og styrkur sýna mun hærri.

Óslitin rennslisróð fyrir vatnsfallið þarf að vera til staðar svo hægt sé að reikna frambrúð. Eins getið var í kafla 2 var tekin ákvörðun um að nota líkan við gerð rennslisráðarinnar fyrir Jökulkvísl sem er eftirfarandi: Pauli – Hólmsárfoss * 1,4 (sjá nánar í Viðauka I, Esther Hlíðar Jensen o.fl., 2016b). Sá ágalli er á þessari nálgun að allt komu fram neikveð gildi og því þurfti að það væri reiknaður greinarmunur á því hvert það var veðrað berg eða annað laust efni eða eins og í þessu tilviki gömsku. Það er því mikið laust efni sem flutur af sýnum eða því talað um hatt rofnæmi. Í fyrri skýrlu um frambrúð í Hólmá við Þaula (Esther Hlíðar Jensen o.fl. 2016a) kom fram að frambrúðar við Þaula er stöðugri en við Framgil jafnvel að vetri til þegar jökullþátturinn er ekki til staðar og meira framboð af læsefnum. Svifaurslykla fyrir Jökulkvísl benda til að þetta ferli sé jafnvel enn skýrara þar þ.e. meira framboð af efni og meira rofnæmi er við sýnatökustaðinn í Jökulkvísl en niðri við Þaula.

<table>
<thead>
<tr>
<th>Staður</th>
<th>Dagsetning</th>
<th>Kl.</th>
<th>Rennsli (m³/s)</th>
<th>Aur-Styrkur (mg/l)</th>
<th>TDS (mg/l)</th>
<th>Kornastærð (%) flokkastærðir í <0,002 0,02- 0,06 0,2- >0,2</th>
<th>Stærsta kom (mm)</th>
<th>Sýna- gerð</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jökulkvísl</td>
<td>2017-07-12</td>
<td>10:10</td>
<td>6,66</td>
<td>213</td>
<td>82</td>
<td>33 21 13 22 11</td>
<td>1,2</td>
<td>S1</td>
</tr>
<tr>
<td></td>
<td>2017-07-12</td>
<td>13:45</td>
<td>6,66</td>
<td>336</td>
<td>85</td>
<td>32 23 22 18 2</td>
<td>2,6</td>
<td>S1</td>
</tr>
<tr>
<td></td>
<td>2017-09-23</td>
<td>15:20</td>
<td>33,2</td>
<td>1039</td>
<td>36</td>
<td>21 37 25 16 1</td>
<td>2,6</td>
<td>S1</td>
</tr>
<tr>
<td></td>
<td>2017-09-24</td>
<td>09:35</td>
<td>24,2</td>
<td>4629</td>
<td>37</td>
<td>30 35 22 11 2</td>
<td>3,5</td>
<td>S1</td>
</tr>
<tr>
<td></td>
<td>2017-09-24</td>
<td>14:50</td>
<td>15,2</td>
<td>1804</td>
<td>44</td>
<td>40 30 18 9 3</td>
<td>2,9</td>
<td>S1</td>
</tr>
<tr>
<td></td>
<td>2017-09-24</td>
<td>16:15</td>
<td>1827</td>
<td>54</td>
<td>46 25 17 10 2</td>
<td>3,4</td>
<td>S1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2017-10-24</td>
<td>13:00</td>
<td>9,52</td>
<td>448</td>
<td>84</td>
<td>58 19 7 15 1</td>
<td>3,3</td>
<td>S1</td>
</tr>
<tr>
<td></td>
<td>2017-10-24</td>
<td>15:50</td>
<td>342</td>
<td>84</td>
<td>54 20 9 16 1</td>
<td>3,5</td>
<td>S1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2018-11-16</td>
<td>19:15</td>
<td>9,83</td>
<td>2262</td>
<td>52</td>
<td>35 33 20 11 1</td>
<td>3,5</td>
<td>S1</td>
</tr>
<tr>
<td></td>
<td>2018-11-16</td>
<td>23:45</td>
<td>31,9</td>
<td>6769</td>
<td>31</td>
<td>50 25 15 9 1</td>
<td>4,3</td>
<td>S1</td>
</tr>
<tr>
<td></td>
<td>2018-11-17</td>
<td>07:20</td>
<td>46,2</td>
<td>5448</td>
<td>35</td>
<td>32 29 21 16 2</td>
<td>3,2</td>
<td>S1</td>
</tr>
<tr>
<td></td>
<td>2018-11-17</td>
<td>09:20</td>
<td>6823</td>
<td>43</td>
<td>13 35 27 21 4</td>
<td>2,0</td>
<td>S1</td>
<td></td>
</tr>
<tr>
<td>Ytri-Bláfellsá</td>
<td>2017-07-12</td>
<td>14:00</td>
<td>2290</td>
<td>76</td>
<td>11 41 29 15 4</td>
<td>2,3</td>
<td>S3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2017-09-23</td>
<td>19:50</td>
<td>7064</td>
<td>55</td>
<td>7 39 29 20 5</td>
<td>1,4</td>
<td>S3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2017-09-24</td>
<td>09:10</td>
<td>9461</td>
<td>54</td>
<td>13 39 26 17 5</td>
<td>2,1</td>
<td>S3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2017-10-24</td>
<td>16:20</td>
<td>2118</td>
<td>67</td>
<td>13 35 27 20 5</td>
<td>1,5</td>
<td>S3</td>
<td></td>
</tr>
</tbody>
</table>

Tafla 8. Helstu einkenni svifaurslyklanna. H.r.l. er hæsta rennsli lykils og L.r.l. er lægsta rennsli lykils.

<table>
<thead>
<tr>
<th>Tímathl</th>
<th>Árstíð</th>
<th>Sýna- fjoði</th>
<th>Fjöldi</th>
<th>H.r.l.</th>
<th>L.r.l.</th>
<th>Fylgni</th>
<th>stuðull</th>
<th>Veldisvisir</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>m³/s</td>
<td>m³/s</td>
<td>R</td>
<td>k x 10⁶</td>
<td>n</td>
</tr>
<tr>
<td>Sumar</td>
<td>8</td>
<td>3</td>
<td>47,5</td>
<td>15,3</td>
<td>0,81</td>
<td>1007000</td>
<td>1,46</td>
<td></td>
</tr>
<tr>
<td>Jökulkvísl 2013–2014</td>
<td>Vetur</td>
<td>6</td>
<td>2</td>
<td>11,5</td>
<td>3,4</td>
<td>0,99</td>
<td>1340000</td>
<td>1,86</td>
</tr>
<tr>
<td></td>
<td>Allt árið</td>
<td>14</td>
<td>5</td>
<td>47,5</td>
<td>3,4</td>
<td>0,98</td>
<td>777000</td>
<td>2,21</td>
</tr>
<tr>
<td>Sumar</td>
<td>8</td>
<td>4</td>
<td>23,3</td>
<td>7,21</td>
<td>0,998</td>
<td>12200</td>
<td>3,02</td>
<td></td>
</tr>
<tr>
<td>Jökulkvísl 2015–2016</td>
<td>Vetur</td>
<td>16</td>
<td>4</td>
<td>23,03</td>
<td>6,7</td>
<td>0,90</td>
<td>3600</td>
<td>3,16</td>
</tr>
<tr>
<td></td>
<td>Allt árið</td>
<td>24</td>
<td>8</td>
<td>23,3</td>
<td>6,7</td>
<td>0,89</td>
<td>9241</td>
<td>2,90</td>
</tr>
<tr>
<td>Sumar</td>
<td>22</td>
<td>9</td>
<td>47,5</td>
<td>6,66</td>
<td>0,93</td>
<td>39900</td>
<td>2,42</td>
<td></td>
</tr>
<tr>
<td>Jökulkvísl 2013–2018</td>
<td>Vetur</td>
<td>28</td>
<td>8</td>
<td>46,2</td>
<td>3,42</td>
<td>0,91</td>
<td>28000</td>
<td>2,43</td>
</tr>
<tr>
<td></td>
<td>Allt árið</td>
<td>50</td>
<td>17</td>
<td>47,5</td>
<td>3,42</td>
<td>0,92</td>
<td>28000</td>
<td>2,48</td>
</tr>
<tr>
<td>Fríði</td>
<td>2009–2013</td>
<td>Allt árið</td>
<td>38</td>
<td>16</td>
<td>232</td>
<td>35,3</td>
<td>0,87</td>
<td>140</td>
</tr>
<tr>
<td>Framgil</td>
<td>2002–2009</td>
<td>Allt árið</td>
<td>48</td>
<td>58</td>
<td>148</td>
<td>28,1</td>
<td>0,92</td>
<td>0,34</td>
</tr>
</tbody>
</table>

22

\[q_s = 0.028 \cdot Q^{2.48} \]
\[R = 0.92 \]

\[q_s = 0.028 \cdot Q^{2.43} \]
\[R = 0.91 \]

\[q_s = 0.04 \cdot Q^{2.42} \]
\[R = 0.93 \]

<table>
<thead>
<tr>
<th>Staður</th>
<th>Ársvifaursframburður (millj. tonn/ár)</th>
<th>Svifaður sumar (millj. tonn/ár)</th>
<th>Svifaður vetur (millj. tonn/ár)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jökulkvisl 2013-2016</td>
<td>0,97</td>
<td>0,56</td>
<td>0,37</td>
</tr>
<tr>
<td>Jökulkvisl 2017</td>
<td>0,38</td>
<td>0,28</td>
<td>0,11</td>
</tr>
</tbody>
</table>

4.1.1 Kornastærðargreining svifaurs

Mikill munur er á kornastærðardreifingu innan svifaursýna frá Jökulkvisl. Mynd 15 sýnir kassagraf af dreifingu styrks eftir kornastærðarflokum í mg/l og sem hlutfall (%) af heild. Tafla 10 sýnir gildin á bak við myndinnar á mynd 15. Q1 stendur fyrrir neðsta fjördungsmark, eða 25% af úrtakinu og Q3 er efsta fjördungsmark, eða 75% úrtaksins. Miðgildið sýnir hvar 50% sýna liggja og er lína sem skilur milli kassanna í hverjum flokki. Miðgildið er önnæmt fyrrir útlögum ölikt meðaltali. Innri spönn, þ.e. sýnin sem þar eru lenda á milli 25–75% allra sýna í úrtakinu kallast IQR. Eftir því sem spönnin er meiri því lengri verða kassarnir á grafinu. Útlagar eru skilgreindir þannig að eftir mörk útlaga eru sett við gildi sem samsvarandi 1,5 * IQR yfir efsta fjördungsmarki en neðra mörkin við samsvarandi 1,5 * IQR undir neðsta fjördungsmarki. Mikilvægt er að átta sig að útlagar eru ekki endilega léleg sýni en geta þvert á möti verið mjög þýdingarmiklir fyrrir gagnasettið. Mynd 15 sýnir að sandur og grófmór eru stærstur hluti sýnanna. Dreifing inn sandflokksins er hins vegar meiri eða 70 mg/l í 3385 mg/l á meðan grófmór fer úr 45 mg/l í 2388 mg/l. Hins vegar er miðgildi styrks samanlagðra finefna (leir, mélu og finmós) um 33,5% sem er 6,5% meira en grófmór.
Mynd 15. Kassagraf af dreifingu styrks svifaurs eftir kornastærðarflokum. Hlutfall í hverjum flokki (%) á efra grafi og í mg/l á nedra grafi.

Tafla 10. Dreifing styrks eftir kornastærðum.

<table>
<thead>
<tr>
<th>Hlutfall styrks(%)</th>
<th>Sandur</th>
<th>Grófmór</th>
<th>Fínmór</th>
<th>Méla</th>
<th>Leir</th>
<th>Finefni</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min</td>
<td>13,0</td>
<td>19,0</td>
<td>7,0</td>
<td>9,0</td>
<td>1,0</td>
<td>23,0</td>
</tr>
<tr>
<td>Q1</td>
<td>31,5</td>
<td>22,5</td>
<td>14,5</td>
<td>10,8</td>
<td>1,0</td>
<td>283</td>
</tr>
<tr>
<td>Miðgildi</td>
<td>34,0</td>
<td>27,0</td>
<td>19,0</td>
<td>15,5</td>
<td>2,0</td>
<td>33,5</td>
</tr>
<tr>
<td>Q3</td>
<td>47,0</td>
<td>33,5</td>
<td>22,0</td>
<td>16,5</td>
<td>2,3</td>
<td>42,0</td>
</tr>
<tr>
<td>Max</td>
<td>58,0</td>
<td>37,0</td>
<td>27,0</td>
<td>22,0</td>
<td>11,0</td>
<td>52,0</td>
</tr>
<tr>
<td>IQR</td>
<td>15,5</td>
<td>11,0</td>
<td>7,5</td>
<td>5,8</td>
<td>1,3</td>
<td>13,8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Auststyrkur (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min</td>
</tr>
<tr>
<td>Q1</td>
</tr>
<tr>
<td>Miðgildi</td>
</tr>
<tr>
<td>Q3</td>
</tr>
<tr>
<td>Max</td>
</tr>
<tr>
<td>IQR</td>
</tr>
</tbody>
</table>

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>44,7</td>
<td>63,3</td>
<td>318</td>
<td>534,2</td>
<td>1432,8</td>
</tr>
<tr>
<td></td>
<td>83,2</td>
<td>65,5</td>
<td>318</td>
<td>73,9</td>
<td>273</td>
</tr>
<tr>
<td></td>
<td>999</td>
<td>9,5</td>
<td>174,5</td>
<td>1638</td>
<td>3548</td>
</tr>
<tr>
<td></td>
<td>1590</td>
<td>73,9</td>
<td>1432,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1016</td>
<td>273</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2388</td>
<td>273</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1507</td>
<td>273</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>953</td>
<td>273</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>468,7</td>
<td>64,4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1507</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.1.2 Niðurstöður skriðaursmælinga

Aðferðin við að reikna heildaframburður skriðaurs fyrir hverja stöð í hverju rennslisbili og siðan er framburður allra stöðva lagður saman samkvæmt aðferð WMO sem fjallað er um í kafla 2.3.1 í þessari kýrslu (World Meteorological Organization, 1994). Gögnin eru siðan teiknuð upp á móti rennsli og leitnilina reiknuð, á formúlu \(q_s = k \times Q^n \) eins og fyrir svifaur (sjá kafla 2.2.2). Niðurstöðurnar eru bírtaðar á mynd 17. Hér er aftur á móti ekki notast við meðalrennsli í mælingu heldur rennslismælingu fyrir og eftir sýnatöku sem eykur óvissu skriðaurslykilsins.

<table>
<thead>
<tr>
<th>Vatnsfall</th>
<th>Gildistimi lykils</th>
<th>Rennslis-bil</th>
<th>Fjöldi ferða</th>
<th>H.r.l. m³/s</th>
<th>L.r.l. m³/s</th>
<th>Fylgni</th>
<th>Hlutfalls-stuðull k * 10⁶</th>
<th>Veldisvisir n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jökulkvísl 2013–2014</td>
<td>8</td>
<td>5</td>
<td>47,5</td>
<td>3,4</td>
<td>0,92</td>
<td>41000</td>
<td>2,13</td>
<td></td>
</tr>
<tr>
<td>2013–2016</td>
<td>21</td>
<td>12</td>
<td>47,5</td>
<td>3,4</td>
<td>0,85</td>
<td>19000</td>
<td>2,36</td>
<td></td>
</tr>
<tr>
<td>2013–2018</td>
<td>30</td>
<td>17</td>
<td>46,2</td>
<td>3,4</td>
<td>0,86</td>
<td>4000</td>
<td>2,95</td>
<td></td>
</tr>
<tr>
<td>Þauli 2009–2013</td>
<td>26</td>
<td>15</td>
<td>232</td>
<td>35,3</td>
<td>0,59</td>
<td>12000</td>
<td>1,69</td>
<td></td>
</tr>
<tr>
<td>Framgil 2002–2009</td>
<td>40</td>
<td>57</td>
<td>163</td>
<td>28,1</td>
<td>0,77</td>
<td>50</td>
<td>2,64</td>
<td></td>
</tr>
</tbody>
</table>

4.1.3 Kornastærðargreiningar skríðaurs

Eins og fjallað var um hér að framan eru kornastærðareiginleikar eintoppa sýna skoðaðir sérstaklega. Af 34 sýnum sem voru kornastærðargreind voru 29 eintoppa þ.e. 5 sóni voru tví- eða fleirtoppa (Tafla 4). Þegar um eintoppa dreifingu er að ræða er sýninu skipt í flokka eftir hundraðshlutamarki þ.e. D₁₀ eða D₅₀ o.s.frv. og magn í flokkunum notað til að skilgreina eiginleika sýnisins. Þegar sóni eru tví- eða fleirtoppa er ekkert vit í að skoða þessa flokka því t.d. helmingur sýnisins (D₅₀) segir ekki til um eiginleika dreifingarinnar þ.e. skakka, aðgreiningu eða medałstærð. Hámarkstopur getur verið þeirri vegar og eintoppa sóni voru fleirtoppa eða skoða þessa skakka, aðgreiningu eða medałstærð. Mynd 18 sóni voru fleirtoppa eða skakka (efri mynd) annars vegar og eintoppa sóni voru fleirtoppa eða skakka (neðri mynd) hins vegar, litakóðað eftir árum. Þar sést að aðgreining

5 Samantekt

Sýnatöku í Jökulkvísl var ætløð að varpa ljósi á þann framburð sem berst inn á væntanlegt lónstædi ofan við Atley. Það setur verkefninu nokkrar skorður að eins og í fyrri skýrslu (Esther Hlíðar Jensen o.fl., 2016b og 2017) var rennsli ætløð vegna þess að ekki hefur verið rekinn vatnshaðarmælir í Jökulkvísl í nógu langan tíma. Framburður var því reiknaður út frá áætluðu rennsli, þ.e. rennsli við Þaula að frádregnu rennsli við Hólmsárfoss margfalfað með 1,4 (Esther Hlíðar Jensen o.fl., 2016b og 2017). Verða niðurstöðurnar að skoðast í ljósi þeirra takmarkana.

Þegar gerð var tilraun til greiningar á sambandi rennslis við Þaula og Jökulkvísl kom í ljós að það er tvískipt (Mynd 7). Hér gæti verið um að ræða mismun á renslisháttum annars vegar vegna jökulbráðnunar og hins vegar vegna úrkomuaðurða. Með því að greina árstíðarbundið rennsli og samband við úrkomu mætti fá betri mynd af rennsli í Jökulkvísl þar sem erfðilega hefur gengið að reka þar vatnshaðarmæli.

Heildarframburður Jökulkvislar árið 2017 reiknaðist 0,65 milljón tonn (Tafla 12). Það er nokkru minni framburður en verið hefur síðustu ár. Liklegasta skýrningin er vanáætløð rennsli samkvæmt rekniformulú „rennsli Þaula“ – „rennsli Framgils“ *1.4 eins og sjá má á mynd 10 en einnig lægra rennslis ársins eins og fram kemur á mælinum við Þaula (Mynd 4) og reiknað dagsméðalrennsli fyrir Jökulkvísl gefur til kynna (Tafla 12).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gildistimi lýkils</td>
<td>Ár</td>
<td>Dagsméðal-rennslis (millj. t/ár)</td>
<td>Svífaursframburður (millj. t/ári) skv. heilduðum árslykli</td>
</tr>
<tr>
<td>Jökulkvísl</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013–2014</td>
<td>’14</td>
<td>12</td>
<td>1,59</td>
</tr>
<tr>
<td>2013–2016</td>
<td>’15–’16</td>
<td>15</td>
<td>0,97</td>
</tr>
<tr>
<td>2013–2018</td>
<td>’17</td>
<td>6</td>
<td>0,38</td>
</tr>
<tr>
<td>Þauli</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009–2013</td>
<td>’17</td>
<td>68</td>
<td>2,57</td>
</tr>
<tr>
<td>Framgíl</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2002–2009</td>
<td>’17</td>
<td>44</td>
<td>1,01</td>
</tr>
</tbody>
</table>

Miklar breytingar hafa átt sér stað á vatnasvið Jökulkvíslar síðustu ár vegna hopunar Mýrdalsjökuls. Farvegurinn neðan við brúna þar sem sýnataka fer fram hefur síðustu ár verið að grafa sig niður í aurkeilu sem þar er. Í vettvangsféðum hafa mælingamenn orðið varir við þessar breytingar og telja að jafnvel sé minni framburður í ánni nú en var í byrjun mælinga 2014–2015.
6 Heimildir

Viðauki I. Niðurstöður á framburðarútreikningum skriðaurssýna

Niðurstöður á heilduðum framburðarútreikningum skriðaurssýna.

<table>
<thead>
<tr>
<th>Dags</th>
<th>Q</th>
<th>h-bakki</th>
<th>v-bakki</th>
<th>Breidd í rennslismælingu</th>
<th>Stöð</th>
<th>Endi</th>
<th>Alls g/s/m</th>
<th>Heildaður framburður (kg/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017-07-12</td>
<td>6,6</td>
<td>5,6</td>
<td>17,5</td>
<td>11,9</td>
<td>0,22</td>
<td>3,28</td>
<td>21,9</td>
<td>120</td>
</tr>
<tr>
<td>2017-07-12</td>
<td>6,6</td>
<td>5,6</td>
<td>17,5</td>
<td>11,9</td>
<td>1,53</td>
<td>32,3</td>
<td>37,7</td>
<td>10,6</td>
</tr>
<tr>
<td>2017-07-12</td>
<td>6,6</td>
<td>5,6</td>
<td>17,5</td>
<td>11,9</td>
<td>2,13</td>
<td>27,3</td>
<td>174</td>
<td>205</td>
</tr>
<tr>
<td>2017-09-23</td>
<td>33,2</td>
<td>5,6</td>
<td>17,5</td>
<td>11,9</td>
<td>1350</td>
<td>15683</td>
<td>31192</td>
<td>35408</td>
</tr>
<tr>
<td>2017-09-24</td>
<td>15,2</td>
<td>5,6</td>
<td>17,5</td>
<td>11,9</td>
<td>993</td>
<td>13835</td>
<td>35108</td>
<td>26439</td>
</tr>
<tr>
<td>2017-10-24</td>
<td>9,52</td>
<td>5,6</td>
<td>17,5</td>
<td>11,9</td>
<td>20,8</td>
<td>145</td>
<td>285</td>
<td>285</td>
</tr>
<tr>
<td>2018-11-16</td>
<td>9,38</td>
<td>5,6</td>
<td>17,5</td>
<td>11,9</td>
<td>908</td>
<td>14761</td>
<td>16940</td>
<td>5050</td>
</tr>
<tr>
<td>2018-11-16</td>
<td>31,9</td>
<td>5,6</td>
<td>17,5</td>
<td>11,9</td>
<td>2109</td>
<td>13559</td>
<td>36769</td>
<td>31341</td>
</tr>
<tr>
<td>2018-11-17</td>
<td>46,2</td>
<td>5,6</td>
<td>17,5</td>
<td>11,9</td>
<td>3533</td>
<td>21390</td>
<td>34647</td>
<td>29013</td>
</tr>
</tbody>
</table>

Breiddir: 6 7 9 11 13 15 16
Skriðaur - Jökulkvísl 2017 með G2Sd

```r
library(G2Sd)
par(mfrow=c(3,2))
granstat(sigtun_20170712r, aggr = FALSE, modes = TRUE) -> stat_20170712
```

par(mfrow=c(3,2))

granstat(sigtun_20170923r, modes = TRUE) -> stat_20170923

par(mfrow=c(3,2))
granstat(sigtun_20170924r, modes = TRUE) -> stat_20170924

par(mfrow=c(3,2))
granstat(sigtun_20171024r, modes = TRUE) -> stat_20171024

par(mfrow=c(3,2))
granstat(sigtun_20181116r, modes = TRUE) -> stat_20181116

par(mfrow=c(3,2))
granstat(sigtun_20181117r, modes = TRUE) -> stat_20181117

par(mfrow=c(3,2))
grandistrib(sigtun_20170712r, main = "2017-07-12", scale = "fine")
grandistrib(sigtun_20170923r, main = "2017-09-23", scale = "fine")
grandistrib(sigtun_20170924r, main = "2017-09-24", scale = "fine")
grandistrib(sigtun_20171024r, main = "2017-10-24", scale = "fine")
grandistrib(sigtun_20181116r, main = "2018-11-16", scale = "fine")
grandistrib(sigtun_20181117r, main = "2018-11-17", scale = "fine")

Mynd 25. Dreifing kornastærðar skriðaurs eftir stöðvum í ýversniði.
par(mfrow=c(3,2))
granplot(sigtun_20171024r, xc=1:5, col.cum = "purple", main="2017-07-12")
granplot(sigtun_20171024r, xc=1:5, col.cum = "purple", main="2017-09-23")
granplot(sigtun_20171024r, xc=1:5, col.cum = "purple", main="2017-09-24")
granplot(sigtun_20171024r, xc=1:5, col.cum = "purple", main="2017-10-24")
granplot(sigtun_20171116r, xc=1:5, col.cum = "purple", main="2018-11-16")
granplot(sigtun_20181117r, xc=1:5, col.cum = "purple", main="2018-11-17")
Mynd 26. Safntönnir kornastaðararmeldra skriðaurssýna úr Jökulkvísl 2017. Dagsetningarnar sýna atburðarferðir. X-ásinn sýnir phi-kvarða frá 4 til -7 (stækandi til hægri) eða 0,063mm til 128mm og y-ásinn sýnir uppsaftsnað hlutfall (%).

<table>
<thead>
<tr>
<th>Sample</th>
<th>Sediment</th>
<th>Mean.fw.um</th>
<th>Sd.fw.um</th>
<th>Skewness.fw.um</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q7-20170712</td>
<td>Medium Sand,Moderately Sorted,Coarse Skewed,Mesokurtic</td>
<td>1131.199</td>
<td>1.804</td>
<td>0.287</td>
</tr>
<tr>
<td>Q9-20170712</td>
<td>Coarse Sand,Poorly Sorted,Symmetrical,Platykurtic</td>
<td>3269.988</td>
<td>2.099</td>
<td>0.064</td>
</tr>
<tr>
<td>Q11-20170712</td>
<td>Coarse Sand,Poorly Sorted,Symmetrical,Mesokurtic</td>
<td>5331.686</td>
<td>2.04</td>
<td>-0.058</td>
</tr>
<tr>
<td>Q13-20170712</td>
<td>Very Coarse Sand,Poorly Sorted,Fine Skewed,Mesokurtic</td>
<td>10586.028</td>
<td>2.147</td>
<td>-0.203</td>
</tr>
<tr>
<td>Q15-20170712</td>
<td>Coarse Sand,Moderately Sorted,Coarse Skewed,Mesokurtic</td>
<td>1633.447</td>
<td>1.798</td>
<td>0.221</td>
</tr>
<tr>
<td>Q7-20170923</td>
<td>Coarse Sand,Poorly Sorted,Very Coarse Skewed,Leptokurtic</td>
<td>2020.348</td>
<td>2.815</td>
<td>0.398</td>
</tr>
<tr>
<td>Q9-20170923</td>
<td>Very Coarse Sand,Poorly Sorted,Symmetrical,Leptokurtic</td>
<td>7661.836</td>
<td>3.249</td>
<td>0.056</td>
</tr>
<tr>
<td>Q11-20170923</td>
<td>Very Fine Gravel,Poorly Sorted,Coarse Skewed,Leptokurtic</td>
<td>27957.322</td>
<td>3.552</td>
<td>0.188</td>
</tr>
<tr>
<td>Q13-20170923</td>
<td>Fine Gravel,Very Poorly Sorted,Fine Skewed,Mesokurtic</td>
<td>376688.695</td>
<td>4.401</td>
<td>-0.272</td>
</tr>
<tr>
<td>Q15-20170923</td>
<td>Fine Gravel,Very Poorly Sorted,Very Fine Skewed,Platykurtic</td>
<td>350842.614</td>
<td>5.486</td>
<td>-0.378</td>
</tr>
<tr>
<td>Q16-20170923</td>
<td>Medium Sand,Moderately Sorted,Very Coarse Skewed,Mesokurtic</td>
<td>900.395</td>
<td>1.658</td>
<td>0.315</td>
</tr>
<tr>
<td>Q7-20170924</td>
<td>Very Fine Gravel,Poorly Sorted,Symmetrical,Platykurtic</td>
<td>25420.413</td>
<td>3.083</td>
<td>0.006</td>
</tr>
<tr>
<td>Q9-20170924</td>
<td>Very Fine Gravel,Very Poorly Sorted,Symmetrical,Platykurtic</td>
<td>47125.173</td>
<td>4.328</td>
<td>0.031</td>
</tr>
<tr>
<td>Q11-20170924</td>
<td>Fine Gravel,Poorly Sorted,Symmetrical,Platykurtic</td>
<td>120193.06</td>
<td>3.907</td>
<td>0.026</td>
</tr>
<tr>
<td>Q13-20170924</td>
<td>Very Fine Gravel,Poorly Sorted,Symmetrical,Mesokurtic</td>
<td>29580.942</td>
<td>3.151</td>
<td>0.008</td>
</tr>
<tr>
<td>Q15-20170924</td>
<td>Coarse Sand,Moderately Sorted,Very Coarse Skewed,Mesokurtic</td>
<td>1266.571</td>
<td>1.913</td>
<td>0.387</td>
</tr>
<tr>
<td>Q16-20170924</td>
<td>Coarse Sand,Poorly Sorted,Very Coarse Skewed,Leptokurtic</td>
<td>1188.257</td>
<td>2.279</td>
<td>0.453</td>
</tr>
<tr>
<td>Q7-20171024</td>
<td>Very Fine Gravel,Poorly Sorted,Fine Skewed,Leptokurtic</td>
<td>85020.121</td>
<td>2.419</td>
<td>-0.237</td>
</tr>
<tr>
<td>Q9-20171024</td>
<td>Very Fine Gravel,Poorly Sorted,Symmetrical,Mesokurtic</td>
<td>45563.083</td>
<td>2.16</td>
<td>-0.098</td>
</tr>
<tr>
<td>Q11-20171024</td>
<td>Very Coarse Sand,Poorly Sorted,Symmetrical,Mesokurtic</td>
<td>23583.277</td>
<td>2.561</td>
<td>-0.066</td>
</tr>
<tr>
<td>Q13-20171024</td>
<td>Very Fine Gravel,Poorly Sorted,Symmetrical,Mesokurtic</td>
<td>32648.236</td>
<td>2.601</td>
<td>-0.095</td>
</tr>
<tr>
<td>Q15-20171024</td>
<td>Very Fine Gravel,Poorly Sorted,Symmetrical,Mesokurtic</td>
<td>32648.236</td>
<td>2.601</td>
<td>-0.095</td>
</tr>
<tr>
<td>Sample</td>
<td>Sediment</td>
<td>Mean.fw.um</td>
<td>Sd.fw.um</td>
<td>Skewness.fw.um</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>------------</td>
<td>----------</td>
<td>----------------</td>
</tr>
<tr>
<td>Q7-20181116</td>
<td>Coarse Sand, Poorly Sorted, Coarse Skewed, Platykurtic</td>
<td>2154.427</td>
<td>2.262</td>
<td>0.259</td>
</tr>
<tr>
<td>Q9-20181116</td>
<td>Coarse Sand, Poorly Sorted, Symmetrical, Mesokurtic</td>
<td>4241.281</td>
<td>2.383</td>
<td>0.069</td>
</tr>
<tr>
<td>Q11-20181116</td>
<td>Fine Gravel, Very Poorly Sorted, Coarse Skewed, Platykurtic</td>
<td>8394.384</td>
<td>5.157</td>
<td>0.148</td>
</tr>
<tr>
<td>Q13-20181116</td>
<td>Coarse Sand, Poorly Sorted, Very Coarse Skewed, Mesokurtic</td>
<td>2174.558</td>
<td>2.444</td>
<td>0.321</td>
</tr>
<tr>
<td>Q15-20181116</td>
<td>Medium Sand, Moderately Sorted, Coarse Skewed, Mesokurtic</td>
<td>1095.63</td>
<td>1.814</td>
<td>0.277</td>
</tr>
<tr>
<td>Q16-20181116</td>
<td>Medium Sand, Moderately Sorted, Very Coarse Skewed, Mesokurtic</td>
<td>877.621</td>
<td>1.656</td>
<td>0.321</td>
</tr>
<tr>
<td>Q7-20181117</td>
<td>Coarse Sand, Poorly Sorted, Coarse Skewed, Platykurtic</td>
<td>1983.979</td>
<td>2.215</td>
<td>0.283</td>
</tr>
<tr>
<td>Q9-20181117</td>
<td>Very Coarse Sand, Poorly Sorted, Symmetrical, Platykurtic</td>
<td>5384.451</td>
<td>2.495</td>
<td>0.059</td>
</tr>
<tr>
<td>Q11-20181117</td>
<td>Fine Gravel, Very Poorly Sorted, Very Fine Skewed, Platykurtic</td>
<td>390821.209</td>
<td>4.408</td>
<td>-0.31</td>
</tr>
<tr>
<td>Q13-20181117</td>
<td>Coarse Sand, Moderately Sorted, Very Coarse Skewed, Mesokurtic</td>
<td>1398.899</td>
<td>1.948</td>
<td>0.329</td>
</tr>
<tr>
<td>Q15-20181117</td>
<td>Coarse Sand, Moderately Sorted, Very Coarse Skewed, Leptokurtic</td>
<td>2287.671</td>
<td>1.947</td>
<td>0.475</td>
</tr>
<tr>
<td>Q16-20181117</td>
<td>Medium Sand, Moderately Sorted, Very Coarse Skewed, Mesokurtic</td>
<td>895.753</td>
<td>1.634</td>
<td>0.344</td>
</tr>
</tbody>
</table>